
1

Multicore Processors: Architecture &
Programming Project

Project Group Number: 2

Project Title: Memory Allocator for OpenMP Programs

Project Group Members:

1. Darshan Dinesh Kumar (dd3888, N10942768)

2

Problem Definition
● Moore’s Law no longer holds true

● Need for innovative solutions to augment performance

● Multicore Processors are ubiquitous, ideal candidates for performance improvements

● However, parallel applications can be inhibited by the memory allocator

● An unscalable memory allocator can be a significant bottleneck to performance

● Further, it can introduce issues such as False Sharing and Fragmentation

● Consequently, there’s a need for a scalable memory allocator that can solve these issues and positively

contribute to the performance of parallel applications

● This project introduces such a scalable memory allocator for parallel applications (OpenMP)

3

Literature Survey
Serial Single Heap
• Global Heap protected by a single lock
• Serializes memory operations
• Affects scalability and actively induces false sharing
• Ex: Solaris, Windows NT/2000 allocators

Concurrent Single Heap
• Heap is a concurrent data structure (Ex: B-tree)
• Actively induces false sharing
• Expensive locks and atomic update operations

Pure Private Heaps
• A Heap per processor
• Better suited for scalability
• Freed Memory is placed on freeing thread’s heap,

passively inducing false sharing
• Ex: STL’s pthread_alloc, Cilk allocators

Private Heaps with Thresholds
• A Heap per processor with limited free memory
• When free memory on a per processor heap exceeds

threshold, it is moved to a shared heap, passively
inducing false sharing

• Ex: Hoard, DYNIX kernel allocator

Private Heaps with Ownership
• A Heap per processor
• Freed memory is returned to owner processor’s heap, reducing false sharing
• Ex: MT-malloc, Ptmalloc, Lkmalloc which can still exhibit false sharing under certain scenarios
• Allocator implemented in this project falls under this category of per thread heaps with memory

ownership which attempts to eliminate false sharing and minimize fragmentation

4

Experimental Setup
Architecture x86_64

Number of CPUs 64

Number of Sockets 4

Number of Cores per Socket 8

Number of Threads per Core 2

L1d Cache 1 MiB (64 instances)

L1i Cache 2 MiB (32 instances)

L2 Cache 64 MiB (32 instances)

L3 Cache 48 MiB (8 instances)

Page Size 4K bytes

Cache Alignment 64 bytes

L1d Cache Line Size 64 bytes

OpenMP Benchmarks developed for Experimentation

1. Speed

a) No Malloc or Free

b) CPU bound

c) Memory bound

2. Scalability

3. False Sharing Avoidance

a) Active False Sharing

b) Passive False Sharing

4. Fragmentation

Configuration of crunchy2 CIMS machine
used for Experiments

5

Results and Analysis

** Speedup for = Execution Time for 1 thread
n threads Execution Time for n threads

6

Results and Analysis

** Fragmentation = Max amount of memory allocated from OS
Ratio Max amount of memory required by application

7

Conclusion
1. The project introduces a scalable memory allocator using per thread heaps with memory ownership with the following

objectives:

a) Complement and Improve the performance in terms of speed and scalability of parallel applications (OpenMP)

b) Prevent issues inherent to memory allocation like false sharing and fragmentation

2. The results generated for the developed OpenMP benchmarks are promising, especially for Scalability, False Sharing

Avoidance and Low Fragmentation as compared to the Malloc and Hoard memory allocators

3. Admittedly, there is scope for Future work, especially in regards to improving the speed of the developed allocator which

could involve further experimentation as follows:

a) Alternatives to best fit algorithm for finding free blocks like first fit, worst fit, next fit etc.

b) Unmapping based on memory usage statistics

	Slide 1: Multicore Processors: Architecture & Programming Project
	Slide 2: Problem Definition
	Slide 3: Literature Survey
	Slide 4: Experimental Setup
	Slide 5: Results and Analysis
	Slide 6: Results and Analysis
	Slide 7: Conclusion

