Programming Parallel Algorithms (PPA-S25)
Project Report

Project Title: “Design and Implementation of a Parallel
Relational Database from scratch”

Name: Darshan Dinesh Kumar
NetID: dd3888
University ID: N10942768

Project Group Members:
1. Darshan Dinesh Kumar (NetID: dd3888, University ID: N10942768)

GitHub Repository Link: https://github.com/darshand15/PPA_Project

Introduction and Motivation

The exponential growth of data, driven by innovations like the internet, smartphones, and
personal computers, to name a few, has made databases a cornerstone of modern software
applications. As data scales up, storing, managing and querying this data efficiently has
become increasingly complex. In this regard, databases serve as the backbone to store,
manage, and retrieve vast amounts of structured information in an organized manner.
However, designing large-scale, efficient databases presents many challenges in terms of
both design and performance.

With the diminishing returns of Moore’s Law—which historically predicted continuous
improvements in processor speed and computing power through more transistors—there
has been a significant shift towards leveraging Parallel Computing. This shift has become
increasingly pronounced with the rise of multicore and multiprocessor systems, which have
become ubiquitous in modern hardware. Thus, parallelism offers a potential solution for
improving database performance by utilizing the power of multiple cores and processors.
This project is precisely such an effort to design and implement a Relational Database from
scratch and a subset of its many operations while incorporating the various concepts
gleaned from our “Programming Parallel Algorithms” course and related ideas inherent to
the domain of Parallel Computing.

Related Work

The ubiquity and pervasive nature of databases can be contributed to the significant
research and development towards various kinds of databases as summarized below:

e Relational Databases (SQL-based): Relational databases store data in structured
tables with rows and columns, using SQL (Structured Query Language) for querying.

Examples include MySQL, PostgreSQL, SQLite, Microsoft SQL Server, and Oracle
Database.

NoSQL Databases (non-relational): NoSQL databases are designed for flexibility,
scalability, and handling unstructured or semi-structured data. Examples include
MongoDB, Redis, Cassandra, CouchDB, and DynamoDB.

Graph Databases: Graph databases are optimized for managing and querying
relationships between data points. Examples include Neo4j, Amazon Neptune, and
OrientDB.

Time-Series Databases: Time-series databases are specialized for storing and
guerying data that is time-stamped, such as sensor logs, financial data, or monitoring
metrics. Examples include InfluxDB, TimescaleDB, and Prometheus.

Cloud-native / Serverless Databases: These databases are designed to scale in the
cloud and often handle infrastructure and provisioning automatically. Examples
include Firebase Realtime Database, Firestore, Amazon Aurora, and PlanetScale.

Embedded / Lightweight Databases: Embedded databases are designed to be
bundled inside applications with no need for a separate server process. Examples
include SQLite, LevelDB, and RocksDB.

Inspiration

This project is inspired by the well-known SQL-based Relational Databases. It has been
attempted to simulate the typical CRUD (Create, Read, Update, Delete) operations of these
SQL-based Relational Databases while trying to incorporate various aspects related to
Parallelism as part of the design and implementation of the Database. The Textbook titled
“Fundamentals of Database Systems” by Ramez Elmasri and Shamkant B. Navathe, 7
Edition, Pearson Publications has been used as the primary reference for various concepts
related to Database Systems.

Goals of the Project:

The following are the goals of the project:

Design and implement a parallel relational database supporting a subset of the typical
CRUD (Create, Read, Update, Delete) operations, including queries like different variants
of the Select Query, Update Query, Insert Into Query, Delete Query, Order By Query,
Group By Query, Aggregate Queries like Count, Min, Max, Sum, Average.

Incorporate aspects related to Parallelism for various candidate queries as below:

o Select query based on the primary key field: As part of the initial table creation and

while performing the operation to set the primary key, an indexing data structure

such as a B-Tree can be created. This B-Tree can contain the primary key fields and a
pointer to the corresponding row. Thus, the B-Tree would be ordered based on the
primary key fields. Therefore, if the select query is based on the primary key field,
this indexing data structure would allow for efficient retrieval. It could be explored to
see how variants of the Select Query can be optimized using the B-Tree indexing data
structure. This could be in relation to searching for a specific row/tuple of the table
based on a particular value of the primary key field or searching for rows/tuples
based on a range of values of the primary key field.

o Select query based on non-primary key fields: Here, the table could be divided into
different chunks that can be parallelly searched through to retrieve the different rows
for the Select query. This could use a mechanism similar to the parallel_for primitive.
Further, as the retrieved rows must be displayed, explicit care must be taken while
printing out the rows parallelly. This could be accounted for by introducing an
additional data structure to contain the indices of the rows to be printed. This data
structure could be handled through a lock to push the indices and then finally used
to sequentially print the rows.

o Order By Operation: The Order By operation that orders the rows of the table based
on the mentioned column(s) could be parallelized. As this query would essentially
perform the sort operation, it could be explored to implement the sort in parallel by
using a method similar to parallel merge sort.

o Group By and Aggregate Operations: The Group By Operation usually involves
grouping the tuples based on some condition and then applying some aggregate
operation like Count, Min, Max, Sum, Average. Therefore, it could be explored to see
how this can be parallelized by using a parallel sort initially to group the tuples and
then performing the aggregate operations parallelly using the parallel primitives like
filter, tabulate and reduce.

o Perform Functionality Testing to verify the behaviour of the different operations that
have been implemented. Further, the parallel implementations should be thoroughly
tested and compared with their sequential counterparts to verify their correctness.

e Present a Performance comparison and Evaluation showing the benefits due to the
implemented Parallelism. For example, speedup comparison could be shown to highlight

the benefits of the different queries with parallelism implemented as compared to their
sequential counterparts.

Summary of the outcomes/results of the Project:

The outcomes/results of the Project can be summarized as follows:

e A parallel relational database supporting a subset of the typical CRUD (Create, Read,
Update, Delete) operations has been designed and implemented.

e Various CRUD queries fundamental to the functionality of a Database have been
implemented as below:

O

O O O O O O

Creating a Table

Setting a Primary Key

Inserting rows into the table

Enforcing the Primary Key Constraint

Updating the rows of the table including conditional updation

Deleting the rows of the table including conditional deletion

Different variants of the Select Query including Selecting all the columns of all
the rows, Selecting all the columns of rows meeting a condition, Selecting a
subset of the columns of all rows, Selecting a subset of the columns of rows
meeting a condition.

e Various aspects related to Parallelism have been identified and implemented as
follows:

O

Select Search Query based on equality of primary key field: Here, a B-Tree
has been implemented for indexing the table based on the primary key field.
It was observed that the Select Search Query using the B-Tree
implementation performed approximately 20x faster than the corresponding
sequential implementation.

Select Range Query based on primary key field: Here, a B-Tree has been
implemented for indexing the table based on the primary key field. It was
observed that the Select Range Query using the B-Tree implementation
performed approximately 2x faster than the corresponding sequential
implementation.

Select all Columns for rows meeting a condition: A parallel for loop was used
to implement this query. It was observed that the speedup was suboptimal
(below 1) in this case with the speedup further decreasing with the increase
in the number of threads. The main reason is that as this query requires
displaying of the rows, the implementation uses a lock-based data structure
to serialize the prints. As these overheads due to lock-contention are
significant, there are no benefits due to parallelism for this query and it in fact
worsens the performance as compared to the sequential version.

Select a subset of the Columns for rows meeting a condition: A parallel for
loop was used to implement this query. It was observed that the speedup was
suboptimal (below 1) in this case with the speedup further decreasing with
the increase in the number of threads. The main reason is that as this query
requires displaying of the rows, the implementation uses a lock-based data
structure to serialize the prints. As these overheads due to lock-contention
are significant, there are no benefits due to parallelism for this query and it in
fact worsens the performance as compared to the sequential version.

o Order by Ascending Query: A Parallel merge sort was used to implement this
guery. It was observed that the Parallel version achieved a maximum
speedup of 2.2 for 16 threads, thereby denoting that there were some
benefits due to parallelism.

o Order by Descending Query: A Parallel merge sort was used to implement
this query. It was observed that the Parallel version achieved a maximum
speedup of 1.36 for 8 threads, thereby denoting that there were some
benefits due to parallelism.

o Group by Count Query: Here, two different parallel versions were
implemented:

Parallel Version 1: This initially performs a parallel merge sort followed
by sequential traversal of the sorted rows to aggregate the count of
the groups. This version achieves a maximum speedup of 6 using 32
threads as compared to the sequential version.

Parallel Version 2: This initially performs a parallel merge sort followed
by a parallel algorithm to aggregate the count of the groups using
parallel primitives like tabulate and filter. This version achieves a
maximum speedup of 5.5 using 32 threads as compared to the
sequential version.

The Parallel Version 1 performs slightly better than the Parallel Version
2. This could be because the overheads introduced by version 2’s
algorithm which requires the creation of additional data structures
using tabulate and filter is quite considerable that it is outweighing
any benefits due to parallelism.

o Group by Min Query: Here, two different parallel versions were
implemented:

Parallel Version 1: This initially performs a parallel merge sort followed
by sequential traversal of the sorted rows to aggregate the min of the
groups. This version achieves a maximum speedup of 5.3 using 32
threads as compared to the sequential version.

Parallel Version 2: This initially performs a parallel merge sort followed
by a parallel algorithm to aggregate the min of the groups using
parallel primitives like tabulate, filter and reduce. This version
achieves a maximum speedup of 6.5 using 32 threads as compared to
the sequential version.

The Parallel Version 2 performs better than the Parallel Version 1. This

could be because the parallel version 2 algorithm using primitives like
tabulate, filter and reduce inherently contains more scope for
parallelism as compared to parallel version 1 which is essentially
sequential after the initial parallel sort.

o Group by Max Query: Here, two different parallel versions were
implemented:

Parallel Version 1: This initially performs a parallel merge sort followed
by sequential traversal of the sorted rows to aggregate the max of the
groups. This version achieves a maximum speedup of 5.7 using 32
threads as compared to the sequential version.

Parallel Version 2: This initially performs a parallel merge sort followed
by a parallel algorithm to aggregate the max of the groups using
parallel primitives like tabulate, filter and reduce. This version
achieves a maximum speedup of 8.1 using 32 threads as compared to
the sequential version.

The Parallel Version 2 performs better than the Parallel Version 1. This
could be because the parallel version 2 algorithm using primitives like
tabulate, filter and reduce inherently contains more scope for
parallelism as compared to parallel version 1 which is essentially
sequential after the initial parallel sort.

o Group by Sum Query: Here, two different parallel versions were
implemented:

Parallel Version 1: This initially performs a parallel merge sort followed
by sequential traversal of the sorted rows to aggregate the sum of the
groups. This version achieves a maximum speedup of 6 using 32
threads as compared to the sequential version.

Parallel Version 2: This initially performs a parallel merge sort followed
by a parallel algorithm to aggregate the sum of the groups using
parallel primitives like tabulate, filter and reduce. This version
achieves a maximum speedup of 8.1 using 32 threads as compared to
the sequential version.

The Parallel Version 2 performs better than the Parallel Version 1. This
could be because the parallel version 2 algorithm using primitives like
tabulate, filter and reduce inherently contains more scope for
parallelism as compared to parallel version 1 which is essentially
sequential after the initial parallel sort.

o Group by Average Query: Here, two different parallel versions were
implemented:

® Parallel Version 1: This initially performs a parallel merge sort followed
by sequential traversal of the sorted rows to aggregate the average of
the groups. This version achieves a maximum speedup of 5.5 using 32
threads as compared to the sequential version.

® Parallel Version 2: This initially performs a parallel merge sort followed
by a parallel algorithm to aggregate the average of the groups using
parallel primitives like tabulate, filter and reduce. This version
achieves a maximum speedup of 8.3 using 32 threads as compared to
the sequential version.

The Parallel Version 2 performs better than the Parallel Version 1. This
could be because the parallel version 2 algorithm using primitives like
tabulate, filter and reduce inherently contains more scope for
parallelism as compared to parallel version 1 which is essentially
sequential after the initial parallel sort.

Detailed Description of the technical details of the Project:

The technical details of the project are elaborated under the following categories:

1. Design and implementation of a Parallel Relational Database with a subset of the
typical CRUD (Create, Read, Update, Delete) operations:

e Asthe project was decided to be developed in C++, there were two different
strategies under consideration with regards to the implementation:
i. Atemplate based programming strategy with the generation of a new C++
program to be compiled and executed
ii. A pre-processor based macro programming strategy with the expansion of
the different operations in-place

e The pre-processor based macro programming strategy was used as this only requires
the inclusion of a header file in the client program rather than generating a
completely new C++ program that needs to be compiled and executed

e Consequently, every implemented operation is effectively a macro that gets
expanded in-place with the required code for the operation under consideration

e The C++ Parlay Library is used to avail the parallel fork-join interface in C++

e The C++ Boost Library is used to aid in Macro Programming

e All the graphs are generated for a Person relation of 10000 rows containing id, first
name, last name, age, country, salary as its fields

e A subset of the typical CRUD (Create, Read, Update, Delete) operations inherent to
SQL-based Relational Databases were designed and implemented as detailed below:

o CREATE_TABLE Operation: This is used to create a table/relation in the
database with the mentioned attributes. For every table/relation in the
database, the following code is generated in-place using macro programming:

= Astruct representing a row/tuple of this relation with the appropriate
attributes and their types
= A vector of pointers to the above row struct, essentially representing
the table as a collection of rows
= Avector of strings representing the attribute names to provide
support while displaying the table
= Astruct with bools associated with every field to denote if they are
part of the Primary Key or not. These booleans are initialized to false.
= A B-Tree of minimum degree 3
Macro Signature: CREATE_TABLE(name, fields)
Example Usage: CREATE_TABLE(Person,
((int, id))
((std::string, name))
((std::string, mob_no))

)

Code Snippet:

#define r, data, elem) \
2, 0

#define name, fields

row_##name \

row_##name ##name

name, fields) \

vector< ##namex>

vector<std::string>

##name

BTree< ##namex> ##name (3

o SET_PRIMARY_KEY Operation: This is used to set the Primary Key for a
particular table/relation in the database. This generates the following code in-
place using macro programming:

= |nitializes the bools associated with the mentioned fields to true
denoting that they are part of the primary key for this table.
= Generates a comparator based on the primary key fields. This
comparator is fundamental to the functionalities of the B-Tree
associated with the primary key fields.
Macro Signature: SET_PRIMARY_KEY(name, cols)
Example Usage: SET_PRIMARY_KEY(Person, ((id)))

Code Snippet:

#define r, data, elem) \
else if(left 1, 0

return left
\

name, cols) \

##name = row_##namex left, row_##namex right

return

#define r, data, elem) \
data =

#define name, cols) \
##name [0

o INSERT_INTO Operation: This is used to insert rows of values into the table.
This generates the following code in-place using macro programming:
= Aninstance of the row struct is created and its fields are populated
with the mentioned values
= The primary key constraint is enforced in order to verify that no two
rows in the table have the same set of values for the attributes
defined as the primary key.
= Therow is inserted into the vector for the table and into the B-Tree
only if the primary key constraint is not violated.
= |f the primary key constraint is violated, the insertion of the row is
skipped and an appropriate message is output to the screen after
which the program flow continues.

Macro Signature: INSERT_INTO(name, values)
Example Usage: INSERT_INTO(Person,
((id, 0))
((name, "John"))
((mob_no, "12345"))
)

Code Snippet:

#define r, data, elem) \
data 2, 0 =

#define name, values) \
\

##name * = new ##name; \

name.push_back

##name. insert ##name \

<< "Insertion of row skipped as Primary Key Constraint would be
violated\n"

\

o SELECT_ALL Operation: This is used to retrieve all the rows from the
mentioned table. This generates the following code in-place using macro
programming:

= for loop iterating through the vector of attribute strings to display the
column names for the table
= for loop iterating through the vector of rows of the table to display the
field values for each of these rows
Macro Signature: SELECT_ALL(name)
Example Usage: SELECT_ALL(Person)

Code Snippet:

#define
for ##name) \

<< u\nn \

boost::pfr::for_each_field(x*

std << << u; " \
\

<< u\nn \

o SELECT_ALL_COND Operation: This is used to retrieve specific rows from the
mentioned table based on the mentioned conditions. This generates the
following code in-place using macro programming:

= for loop iterating through the vector of attribute strings to display the
column names for the table
= forloop iterating through the vector of rows of the table to display the
field values for each of these rows satisfying the mentioned
conditions.
Macro Signature: SELECT_ALL_COND(name, cond_lhs, cond_cmp, cond_rhs)
Example Usage: SELECT_ALL_COND(Person, id, >=, 1)

Code Snippet:

#define name, cond_lhs, cond_cmp, cond_rhs) \
for ##name) \

<< u\nn \

if(row_trav->cond_lhs
\

boost::pfr::for_each_field(x*

std << << n; n \
\

<< n\nn \

o SELECT_ALL_COND_PAR Operation: This is a parallel version of the above
SELECT_ALL_COND query and is used to retrieve specific rows from the
mentioned table based on the mentioned conditions. This generates the
following code in-place using macro programming:

= for loop iterating through the vector of attribute strings to display the
column names for the table

= parallel for loop iterating through the vector of rows of the table to
push the indices of the rows satisfying the conditions into a vector

after acquiring a mutex lock. The lock is used to serialize the prints
because if not, the prints from the parallel threads can be undefined
and haphazard due to overlaps.
= for loop iterating through the above vector of indices to display the
field values of the rows corresponding to the indices
Macro Signature: SELECT_ALL_COND_PAR(name, cond_lhs, cond_cmp,
cond_rhs)
Example Usage: SELECT_ALL_COND_PAR(Person, id, >=, 1)

Code Snippet:

name, cond_lhs, cond_cmp, cond_rhs) \
##name) \

<< ||\n|| \

std < >
print_ind.reserve(name.size
std \
parlay::parallel_for(@, name.size
if((name cond_1lhs
\
print_ind_mutex. lock
print_ind.push_back
print_ind_mutex.unlock
\
return 0; \
\

= @; i<print_ind.size

boost::pfr::for_each_field(*x(name[print_ind

std << =z e \
\
Std << n\nu \

The below graph summarizes the performance comparison between SELECT_ALL_COND and
SELECT_ALL_COND_PAR for a query to retrieve the rows of the Person relation (of 10000
rows) with salary >= 250:

Select All Cond Query Comparison: Sequential vs Parallel

0.9

Speedup (Sequential / Parallel)
° °
~ ==

=4
o

0.5 4 >

1 2 4 8 16 32
Number of Threads

Here, the speedup is suboptimal (below 1) and the speedup decreases with the increase in
the number of threads. The main reason is that as this query requires displaying of the rows,
the implementation uses a lock-based data structure to serialize the prints. As these

overheads due to lock-contention are significant, there are no benefits due to parallelism for
this query.

o SELECT_COLS Operation: This is used to retrieve only the values for the
mentioned columns for all the rows from the mentioned table. This generates
the following code in-place using macro programming:

= code to display the mentioned column names for the table
= for loop iterating through the vector of rows of the table to display the
field values corresponding to the mentioned column names for each
of these rows
Macro Signature: SELECT_COLS(name, cols)
Example Usage: SELECT_COLS(Person,
((id))
((name))

)

Code Snippet:

#define name, cols) \

std::cout << "\n"; \

for
\

<< ||\n|| \

o SELECT_COLS_COND Operation: This is used to retrieve the values for the
mentioned columns for all the rows satisfying the given condition from the

mentioned table. This generates the following code in-place using macro
programming:
= code to display the mentioned column names for the table
= for loop iterating through the vector of rows of the table to display the
field values corresponding to the mentioned column names for each
of these rows satisfying the mentioned conditions.
Macro Signature: SELECT_COLS_COND(name, cols, cond_lhs, cond_cmp,
cond_rhs)
Example Usage: SELECT_COLS_COND(Person,
((id))
((name)),
id, >=, 2
)

Code Snippet:

name, cols, cond_lhs, cond_cmp, cond_rhs) \

cout << "\n"; \

if(row_trav->cond_lhs

<< ||\n||

o SELECT_COLS_COND_PAR Operation: This is a parallel version of the above
SELECT_COLS_COND Query and is used to retrieve the values for the
mentioned columns for all the rows satisfying the given condition from the
mentioned table. This generates the following code in-place using macro
programming:

= code to display the mentioned column names for the table

= parallel for loop iterating through the vector of rows of the table to
push the indices of the rows satisfying the conditions into a vector
after acquiring a mutex lock. The lock is used to serialize the prints
because if not, the prints from the parallel threads can be undefined
and haphazard due to overlaps.

= for loop iterating through the above vector of indices to display the
field values corresponding to the mentioned column names for each
of the rows satisfying the mentioned conditions.

Macro Signature: SELECT_COLS_COND_PAR(name, cols, cond_lhs, cond_cmp,

cond_rhs)
Example Usage: SELECT_COLS_COND_PAR (Person,

((id))
((name)),
id, >=, 2)

Code Snippet:

#define name, cols, cond_lhs, cond_cmp, cond_rhs) \

std::cout << "\n"; \
\
std::vector<int>
print_ind.reserve(name.size
std::mutex A\
parlay::parallel_for(@, name.size &] (size_t ind
if((name[ind cond_1lhs \
\
print_ind_mutex. lock
print_ind.push_back(ind
print_ind_mutex.unlock
\
return 0; \

= @; i<print_ind.size

if((name[print_ind cond_lhs

name [print_ind
\
<< ll\nll \

The below graph summarizes the performance comparison between SELECT_COLS_COND
and SELECT_ COLS _COND_PAR for a query to retrieve the id, fname, age fields of the rows
of the Person relation (of 10000 rows) with age >=45:

Select Cols Cond Query Comparison: Sequential vs Parallel

0.8

0.7

0.6 1

0.5

Speedup (Sequential / Parallel)

0.3 4

1 2 4 8 16 32
Number of Threads

Here, the speedup is suboptimal (below 1) and the speedup decreases with the increase in
the number of threads. The main reason is that as this query requires displaying of the rows,
the implementation uses a lock-based data structure to serialize the prints. As these
overheads due to lock-contention are significant, there are no benefits due to parallelism for
this query.

o SELECT_PK_EQ_SEQ Operation: This is used to search and retrieve the row
from the mentioned table satisfying the equality condition on the primary key
fields. This generates the following code in-place using macro programming:

= code to display the column names for the table

= for loop iterating through the vector of rows of the table to retrieve
and display the field values of the row satisfying the equality condition
on the primary key

Macro Signature: SELECT_PK_EQ_SEQ(name, field_pk, cond_cmp, eq_val)
Example Usage: SELECT_PK_EQ_SEQ(Person, id, ==, 7312)

Code Snippet:

#define name, field_pk, cond_cmp, eqg_val) \
for ##name) \

<< ||\n|| \

if(row_trav—>field_pk

boost::pfr::for_each_field(x*

std << =z Mg Mo |
\

std << "\n"; \

break;\

o SELECT_PK_EQ Operation: This is the B-Tree version of the above
SELECT_PK_EQ_SEQ query and is used to search and retrieve the row from
the mentioned table satisfying the equality condition on the primary key
fields. This generates the following code in-place using macro programming:

= code to call the search_eq function on the Primary key B-Tree of the
table that searches and retrieves the row from the mentioned table
satisfying the equality condition on the primary key

= code to display the column names for the table

= code to display the fields of the retrieved row

Macro Signature: SELECT_PK_EQ(name, cond_lhs, cond_cmp, cond_rhs)
Example Usage: SELECT_PK_EQ(Person, id, ==, 7312)

Code Snippet:

name, cond_lhs, cond_cmp, cond_rhs) \

##name x ##name; \
search_eq_row->cond_1lhs \
= ##name.search_eq ##name \
if(ret_search.first != \
\
for ##name) \
\

\
std << u\nn \

boost::pfr::for_each_field(*(ret_search.second

std << << ' \

<< u\nn \

<< "No matching Tuple found\n"; \

The below graph summarizes the performance comparison between SELECT_PK_EQ_SEQ
and SELECT_PK_EQ for a query to retrieve the rows of the Person relation (of 10000 rows)
with id ==7312:

Select Equality Query Comparison: Sequential vs B-Tree (~20x improvement)

200000 4 —e— Sequential Search Time
\/\ B-Tree Search Time
175000 A + * *

150000 -

125000 -

100000 -

75000 -

Time Taken (in nanoseconds)

50000 -

25000 A

1 2 3 4 5 6
Execution Number

It can be observed that the B-Tree implementation performs approximately 20x faster than
the corresponding sequential implementation.

o SELECT_ALL_RANGE Operation: This is used to retrieve the rows from the
mentioned table whose primary key field values are within the mentioned
range. This generates the following code in-place using macro programming:

= for loop iterating through the vector of attribute strings to display the
column names for the table
= for loop iterating through the vector of rows of the table to display the
field values for those rows whose primary key field values are within
the mentioned range
Macro Signature: SELECT_ALL_RANGE(name, field_pk, ge_val, le_val)
Example Usage: SELECT_ALL_RANGE(Person, id, 1291, 1524)

Code Snippet:

#define name, field_pk, ge_val, le_val) \
for ##name) \

<< ||\n|| \

if(row_trav—>field_pk >= && row_trav—>field_pk <=
\
boost::pfr::for_each_field

<< ||\n|| \

o SELECT_PK_RANGE Operation: This is the B-Tree version of the above
SELECT_ALL_RANGE Query and is used to retrieve the rows from the
mentioned table whose primary key field values are within the mentioned
range. This generates the following code in-place using macro programming:

= for loop iterating through the vector of attribute strings to display the
column names for the table
= code to call the range_traverse function that traverses through the B-
Tree and displays the field values for those rows whose primary key
field values are within the mentioned range
Macro Signature: SELECT_PK_RANGE(name, field_pk, ge_val, le_val)
Example Usage: SELECT_PK_RANGE(Person, id, 1291, 1524)

Code Snippet:
name, field_pk, ge_val, le_val) \
##name x new ##name; \
range_ge_row—>field_pk
##name x ##name; \
range_le_row—>field_pk
for ##name

\

<< ||\n|| \

##name. range_traverse ##name

The below graph summarizes the performance comparison between SELECT_ALL_RANGE
and SELECT_PK_RANGE for a query to retrieve the rows of the Person relation (of 10000
rows) with id >= 1291 and id <= 1524:

Select Range Query Comparison: Sequential vs B-Tree (~2x improvement)

._/4——_\/—0———0

750000

700000

650000 -

—8— Sequential Range Time
B-Tree Range Time

600000 -

550000 -

Time Taken (in nanoseconds)

500000

450000 -

1 2 3 4 5 6
Execution Number

It can be observed that the Select Range Query using the B-Tree implementation performs
approximately 2x faster than the corresponding sequential implementation.

o UPDATE_ALL Operation: This is used to update the values of the mentioned
columns of all the rows to the values passed as part of the argument. This
generates the following code in-place using macro programming:

= for loop iterating through the vector of rows of the table to update the
values of the mentioned columns to the values passed as part of the
argument
Macro Signature: UPDATE_ALL(name, upd_values)
Example Usage: UPDATE_ALL(Person,
((id, -1))
((mob_no, "+91"))
)

o UPDATE_COND Operation: This is used to update the values of the
mentioned columns of the rows satisfying the given condition, to the values
passed as part of the argument. This generates the following code in-place
using macro programming:

= for loop iterating through the vector of rows of the table to update the
values of the mentioned columns of the rows satisfying the given
condition, to the values passed as part of the argument
Macro Signature: UPDATE_COND(name, upd_values, cond_lhs, cond_cmp,
cond_rhs)
Example Usage: UPDATE_COND(Person,
((id, 15))
((mob_no, "+91")),

id, ==, 14
)

o DELETE_ALL_ROWS Operation: This is used to delete all the rows of the
mentioned table. This generates the following code in-place using macro
programming:

= for loop iterating through the vector of rows to delete the memory
allocated for these rows
= calling the clear operation on the vector of rows
Macro Signature: DELETE_ALL_ROWS(name)
Example Usage: DELETE_ALL_ROWS(Person)

o DELETE_COND Operation: This is used to delete the rows of the mentioned
table that satisfy the given condition. This generates the following code in-
place using macro programming:

= while loop iterating through the vector of rows to delete the memory
allocated for the row and to erase it from the vector if they satisfy the
given condition
= above while loop ensures to safely handle the deletion of elements of
a vector while iterating through it by updating the iterators
appropriately
Macro Signature: DELETE_COND(name, cond_lhs, cond_cmp, cond_rhs)
Example Usage: DELETE_COND(Person, id, >=, 2)

o ORDER_BY_ASC Operation: This is used to order the table in ascending order
of the mentioned columns and display the rows after ordering. This generates
the following code in-place using macro programming:

= code to create a copy of the vector of rows of the table
= code to call the sequential sort function on the above copy vector
with a comparator generated for comparing the mentioned columns
= for loop iterating through the vector of attribute strings to display the
column names for the table
= for loop iterating through the sorted vector of rows of the table to
display the field values for those rows
Macro Signature: ORDER_BY_ASC(name, cols)
Example Usage: ORDER_BY_ASC(Person,
((fname))
((Iname))
((id))
)

Code Snippet:

#define ORDER_BY_ASC(name, cols) \
{\
std::vector<row_##namex> sort_vec(name.begin(), name.end()); \

std::sort(sort_vec.begin(), sort_vec.end(), [](row_##namex left, row_##namex right){ \

##name) \

<< ||\n|| \

boost::pfr::for_each_field(x*

std << << ' \

\
<< ||\n|| \

<< ||\n|| \

o ORDER_BY_ASC_PAR Operation: This is a parallel version of the above
ORDER_BY_ASC Query and is used to order the table in ascending order of
the mentioned columns and display the rows after ordering. This generates
the following code in-place using macro programming:

= code to create a copy of the vector of rows of the table
= code to call the parallel merge sort function on the above copy vector
with a comparator generated for comparing the mentioned columns
= for loop iterating through the vector of attribute strings to display the
column names for the table
= for loop iterating through the sorted vector of rows of the table to
display the field values for those rows
Macro Signature: ORDER_BY_ASC_PAR(name, cols)
Example Usage: ORDER_BY_ASC_PAR(Person,
((fname))
((Iname))
((id))
)

Code Snippet:

#define name, cols) \

A\
parlay: :sequence< ##namex> sort_seq(name.begin name.end

merge_sort row_##namex left, row_##namex right \

return

##name) \

<< u\nn \

boost::pfr::for_each_field(x*

std << << u; " \
\

<< u\nn \

<< u\nn \

The below graph summarizes the performance comparison between ORDER_BY_ASC and
ORDER_BY_ASC_PAR for a query to order the rows of the Person relation (of 10000 rows)
based on (fname, Iname, id) fields:

Order by Asc Query Comparison: Sequential vs Parallel

2.2 1

2.0 1

1.8 1

1.6 1

Speedup (Sequential / Parallel)

1.2 1

1 2 4 8 16 32
Number of Threads

It can be observed that the Parallel version achieved a maximum speedup of 2.2 for 16
threads, thereby denoting that there were some benefits due to parallelism.

o ORDER_BY_DESC Operation: This is used to order the table in descending
order of the mentioned columns and display the rows after ordering. This
generates the following code in-place using macro programming:

= code to create a copy of the vector of rows of the table

= code to call the sequential sort function on the above copy vector
with a comparator generated for comparing the mentioned columns

= for loop iterating through the vector of attribute strings to display the
column names for the table

= for loop iterating through the sorted vector of rows of the table to
display the field values for those rows

Macro Signature: ORDER_BY_DESC(name, cols)

Example Usage: ORDER_BY_DESC(Person,
((fname))
((Iname))
((id))
)

Code Snippet:

#define name, cols) \

A\
std::vector< ##namex> sort_vec(name.begin name.end \

std::sort(sort_vec.begin sort_vec.end row_##namex left, row_##namex right \

return

##name) \

<< ||\n|| \

pfr::for_each_field(x*

", n
33 << ' \

<< ||\n|| \

<< ||\n|| \

o ORDER_BY_DESC_PAR Operation: This is a parallel version of the above
ORDER_BY_ DESC Query and is used to order the table in descending order of
the mentioned columns and display the rows after ordering. This generates
the following code in-place using macro programming:

= code to create a copy of the vector of rows of the table
= code to call the parallel merge sort function on the above copy vector
with a comparator generated for comparing the mentioned columns
= for loop iterating through the vector of attribute strings to display the
column names for the table
= for loop iterating through the sorted vector of rows of the table to
display the field values for those rows
Macro Signature: ORDER_BY_ DESC _PAR(name, cols)
Example Usage: ORDER_BY_ DESC _PAR(Person,
((fname))
((Iname))

((id)))

Code Snippet:

#define name, cols) \
\

parlay::sequence< ##namex> sort_seq(name.begin name.end

merge_sort row_##namex left, row_##namex right

return

##name) \

<< ||\n|| \

boost::pfr::for_each_field(x*
std << z Mg Mo |
\
<< "\n"; \

<< ||\n|| \

The below graph summarizes the performance comparison between ORDER_BY_ DESC and
ORDER_BY_ DESC _PAR for a query to order the rows of the Person relation (of 10000 rows)
based on (salary, id) fields:

Order by Desc Query Comparison: Sequential vs Parallel

1.30

1.25 1

1.20 4

Speedup (Sequential / Parallel)

1.10 1

1 2 4 8 16 32
Number of Threads

It can be observed that the Parallel version achieved a maximum speedup of 1.36 for 8
threads, thereby denoting that there were some benefits due to parallelism.

o GROUP_BY_COUNT Operation: This is used to group the table based on the
mentioned columns and aggregate the counts of these groups. This generates
the following code in-place using macro programming:

= code to create a copy of the vector of rows of the table
= code to call the sequential sort function on the above copy vector
with a comparator generated for comparing the mentioned columns
= for loop iterating through the vector of attribute strings to display the
column names for the table
= for loop iterating through the sorted vector of rows of the table to
identify groups and aggregate their counts
Macro Signature: GROUP_BY_COUNT(name, cols)
Example Usage: GROUP_BY_COUNT(Person,
((Iname))

Code Snippet:

#define name, cols) \

A\
std::vector< ##namex> sort_vec(name.begin name.end \

std::sort(sort_vec.begin sort_vec.end row_##namex left, row_##namex right \

return
\
if(sort_vec.size 1= 0) \
\
std::cout << "Count; "; \

std::cout << "\n"; \
##namex = sort_vec|0 \
= il \

=1 <sort_vec.size

sort_vec

<< ll\nll
= 1l A\

= sort_vec

std::cout <<

std::cout << "\n\n"; \

o GROUP_BY_COUNT_PAR Operation: This is parallel version 1 of the above
GROUP_BY_COUNT Query and is used to group the table based on the
mentioned columns and aggregate the counts of these groups. This generates
the following code in-place using macro programming:

= code to create a copy of the vector of rows of the table
= code to call the parallel merge sort function on the above copy vector
with a comparator generated for comparing the mentioned columns
= for loop iterating through the vector of attribute strings to display the
column names for the table
= for loop iterating through the sorted vector of rows of the table to
identify groups and aggregate their counts
Macro Signature: GROUP_BY_COUNT_PAR(name, cols)
Example Usage: GROUP_BY_COUNT_PAR(Person,
((Iname))

)

Code Snippet:

#define name, cols) \

A\
parlay: :sequence< ##namex> sort_seq(name.begin name.end

merge_sort row_##namex left, row_##namex right \

return
\
if(sort_seq.size = 09) \
\
std::cout << "Count; "; \

std::cout << "\n"; \
##namex = sort_seql@ \
= il \

= 1; i<sort_seq.size

sort_seq

<< ll\nll \
= 1l A\

= sort_seq

\
std::cout <<

std::cout << "\n\n"; \

o GROUP_BY_COUNT_PAR2 Operation: This is parallel version 2 of the above
GROUP_BY_COUNT Query and is used to group the table based on the
mentioned columns and aggregate the counts of these groups. This generates
the following code in-place using macro programming:

= code to create a copy of the vector of rows of the table
= code to call the parallel merge sort function on the above copy vector
with a comparator generated for comparing the mentioned columns
= code to retrieve the indices of the rows of the table that have unique
values for the mentioned fields using parallel tabulate and parallel
filter
= code to retrieve the counts of the groups corresponding to the above
unique rows using parallel tabulate
= for loop iterating through the vector of attribute strings to display the
column names for the table
= for loop to display groups and their aggregated counts
Macro Signature: GROUP_BY_COUNT_PAR2(name, cols)
Example Usage: GROUP_BY_COUNT_PAR2(Person,
((Iname))

Code Snippet:

#define name, cols) \

A\
parlay::sequence< ##namex> sort_seq(name.begin name.end

merge_sort row_##namex left, row_##namex right \

return
\

= parlay::tabulate(sort_seq.size i return i

= parlay::filter ele return (ele ==
sort_seq sort_seq
\
= parlay::tabulate(boundaries_seq.size

st_ind = boundaries_seqli \

en_ind = -1; \

if(i + 1 == boundaries_seq.size

\
en_ind = sort_seq.size
\
else \
\
en_ind = boundaries_seq[i+1

count_v = en_ind - st_ind; \
return count_v; \
\
if(sort_seq.size '=09) \
\
std::cout << "Count; "; \

std::cout << "\n"; \
for = @; i<boundaries_seq.size
\
std::cout << group_count_seq = \
sort_seqlboundaries_seq
\
std << "\n"; \
\
std::cout << "\n\n"; \

The below graph summarizes the performance comparison between GROUP_BY_COUNT,
GROUP_BY_COUNT_PAR, and GROUP_BY_COUNT_PAR2 for a query to group the rows of the
Person relation (of 10000 rows) based on (Iname) and retrieve their counts:

Group by Count Query Comparison: Sequential vs Parallel
—&— Parallel Version 1 I
61 -m- Parallel Version 2
______________________ n
e
5
]
s
©
o
= 44
8
]
c
[
3
-3
[
2 34
-3
3
°
o
[
Q.
w
2
1
1 2 4 8 A !
Number of Threads

It can be observed that the Parallel Version 1 performs slightly better than the Parallel
Version 2. This could be because the overheads introduced by version 2’s algorithm which
requires the creation of additional data structures using tabulate and filter is quite
considerable that it is outweighing any benefits.

o GROUP_BY_MIN Operation: This is used to group the table based on the
mentioned columns and aggregate the minimum of the mentioned column
for these groups. This generates the following code in-place using macro
programming:

= code to create a copy of the vector of rows of the table
= code to call the sequential sort function on the above copy vector
with a comparator generated for comparing the mentioned columns
= for loop iterating through the vector of attribute strings to display the
column names for the table
= for loop iterating through the sorted vector of rows of the table to
identify groups and aggregate the minimum of the mentioned column
Macro Signature: GROUP_BY_MIN(name, cols, min_col)
Example Usage: GROUP_BY_MIN(Person,
((country)), salary

)

Code Snippet:

#define name, cols, min_col) \

A\
std::vector< ##namex> sort_vec(name.begin name.end \

std::sort(sort_vec.begin sort_vec.end row_##namex left, row_##namex right \

return
\
if(sort_vec.size 1= 0) \
\
std::cout << "Min_" <<

std::cout << "\n"; \
##namex = sort_vec|0 \
= sort_vec|0 min_col; \

=1 <sort_vec.size ++ \

sort_vec

if(sort_vec min_col <

sort_vec min_col; \

<< ||\n|| \

sort_vec min_col; \

sort_vec \

\
std::cout <<

std::cout << "\n\n"; \

o GROUP_BY_MIN_PAR Operation: This is parallel version 1 of the above
GROUP_BY_MIN Query and is used to group the table based on the
mentioned columns and aggregate the minimum of the mentioned column
for these groups. This generates the following code in-place using macro
programming:

= code to create a copy of the vector of rows of the table

= code to call the parallel merge sort function on the above copy vector
with a comparator generated for comparing the mentioned columns

= for loop iterating through the vector of attribute strings to display the
column names for the table

= for loop iterating through the sorted vector of rows of the table to
identify groups and aggregate the minimum of the mentioned column

Macro Signature: GROUP_BY_MIN_PAR(name, cols, min_col)
Example Usage: GROUP_BY_MIN_PAR(Person,
((country)), salary

)

Code Snippet:

#define name, cols, min_col) \

A\
parlay::sequence< ##namex> sort_seq(name.begin name.end

merge_sort row_##namex left, row_##namex right \

return
\

if(sort_seq.size = 09) \
\
std::cout << "Min_

L

std::cout << '"\n"; \

##namex = sort_seql@ \

sort_seql0 min_col; \

<sort_seq.size ++1i) \

sort_seq

if(sort_seq min_col <
\

= sort_seq min_col; \

<< ll\nll \
sort_seq min_col; \

sort_seq \

\
std::cout <<

std::cout << "\n\n"; \

o GROUP_BY_MIN_PAR2 Operation: This is parallel version 2 of the above
GROUP_BY_MIN Query and is used to group the table based on the
mentioned columns and aggregate the minimum of the mentioned column
for these groups. This generates the following code in-place using macro
programming:

= code to create a copy of the vector of rows of the table
= code to call the parallel merge sort function on the above copy vector
with a comparator generated for comparing the mentioned columns
= code to retrieve the indices of the rows of the table that have unique
values for the mentioned fields using parallel tabulate and parallel
filter
= code to retrieve the minimum of the mentioned column for the
groups corresponding to the above unique rows using parallel
tabulate and parallel reduce
= for loop iterating through the vector of attribute strings to display the
column names for the table
= for loop to display groups and their aggregated minimum
Macro Signature: GROUP_BY_MIN_PAR2(name, cols, min_col)
Example Usage: GROUP_BY_MIN_PAR2(Person,
((country)), salary)

Code Snippet:

#define cols
\

parlay

name min_col) \

##namex> sort_seq(name.begin
left

sequence<

merge_sort row_##name row_##name

return
\
= parlay::tabulate(sort_seq.size
= parlay::tabulate(sort_seq.size
= parlay::filter
\
= parlay::tabulate(boundaries_seq
st_ind = boundaries_seqli \
en_ind = -1; \
if(i + 1 == boundaries_seq.size
\
en_ind = sort_seq.size
\
else \
\
en_ind = boundaries_seq[i+1
m = parlay
if(left <= right) \
\

make_monoid

return left; \
\
return right; \
\
min_v = parlay
return min_v; \
\
if(sort_seq.size
\

'=0) \

std <<

cout << "Min_
std
for

\
std

cout << "\n"; \

= @; i<boundaries_seq.size

cout << group_min_seq

reduce(min_col_seq.cut(st_ind

name.end

right

return i \
return sort_seqli
ele ==

ele return

sort_seq sort_seq =1

size

en_ind

sort_seqlboundaries_seq

\
std << n\nn \
\

std::cout << "\n\n"; \

()

The below graph summarizes the performance comparison between GROUP_BY_MIN,
GROUP_BY_MIN_PAR2, and GROUP_BY_MIN_PAR2 for a query to group the rows of the

Person relation (of 10000 rows) based on (country) and retrieve the minimum salary for
these groups:

Group by Min Query Comparison: Sequential vs Parallel

—&— Parallel Version 1
-m- Parallel Version 2 -

w IS w
L L L

Speedup (Sequential / Parallel)

N
s

1 2 4 8 16 32
Number of Threads

It can observed that the Parallel Version 2 performs better than the Parallel Version 1 with
the increase in number of threads. This could be because the parallel version 2 algorithm
using primitives like tabulate, filter and reduce inherently contains more scope for

parallelism as compared to parallel version 1 which is essentially sequential after the initial
parallel sort.

o GROUP_BY_MAX Operation: This is used to group the table based on the
mentioned columns and aggregate the maximum of the mentioned column
for these groups. This generates the following code in-place using macro
programming:

= code to create a copy of the vector of rows of the table
= code to call the sequential sort function on the above copy vector
with a comparator generated for comparing the mentioned columns
= for loop iterating through the vector of attribute strings to display the
column names for the table
= for loop iterating through the sorted vector of rows of the table to
identify groups and aggregate the maximum of the mentioned column
Macro Signature: GROUP_BY_MAX(name, cols, max_col)
Example Usage: GROUP_BY_MAX(Person,
((country)), age

)

Code Snippet:

#define name, cols, max_col) \
A\
std::vector< ##namex> sort_vec(name.begin name.end \

std::sort(sort_vec.begin sort_vec.end row_##namex left, row_##namex right

return
\
if(sort_vec.size 1= 0) \
\
std::cout << "Max_" <<

std::cout << "\n"; \
##namex = sort_vec|0 \
= sort_vec|0 max_col; \

=1 <sort_vec.size ++ \

sort_vec

if(sort_vec max_col >
\

= sort_vec max_col; \

<< ll\nll \
sort_vec max_col; \

sort_vec \

\
std::cout <<

std::cout << "\n\n"; \

o GROUP_BY_MAX_PAR Operation: This is parallel version 1 of the above
GROUP_BY_MAX Query and is used to group the table based on the
mentioned columns and aggregate the maximum of the mentioned column
for these groups. This generates the following code in-place using macro
programming:

= code to create a copy of the vector of rows of the table

= code to call the parallel merge sort function on the above copy vector
with a comparator generated for comparing the mentioned columns

= for loop iterating through the vector of attribute strings to display the
column names for the table

= for loop iterating through the sorted vector of rows of the table to
identify groups and aggregate the maximum of the mentioned column

Macro Signature: GROUP_BY_MAX_PAR(name, cols, max_col)
Example Usage: GROUP_BY_MAX_PAR(Person,
((country)), age

Code Snippet:

#define name, cols, max_col) \

A\
parlay::sequence< ##namex> sort_seq(name.begin name.end

merge_sort row_##namex left, row_##namex right \

return
\
if(sort_seq.size = 09) \
\
std::cout << "Max_

L

std::cout << "\n"; \
##namex = sort_seql0 \
= sort_seql0@ max_col; \

= 1; i<sort_seq.size ++1i) \

if(sort_seq max_col >

\
= sort_seq max_col; \

<< ll\nll \
sort_seq max_col; \

sort_seq \

\
std::cout <<

std::cout << "\n\n"; \

o GROUP_BY_MAX_PAR2 Operation: This is parallel version 2 of the above
GROUP_BY_MAX Query and is used to group the table based on the
mentioned columns and aggregate the maximum of the mentioned column
for these groups. This generates the following code in-place using macro
programming:

= code to create a copy of the vector of rows of the table
= code to call the parallel merge sort function on the above copy vector
with a comparator generated for comparing the mentioned columns
= code to retrieve the indices of the rows of the table that have unique
values for the mentioned fields using parallel tabulate and parallel
filter
= code to retrieve the maximum of the mentioned column for the
groups corresponding to the above unique rows using parallel
tabulate and parallel reduce
= for loop iterating through the vector of attribute strings to display the
column names for the table
= for loop to display groups and their aggregated maximum
Macro Signature: GROUP_BY_MAX_PAR2(name, cols, max_col)
Example Usage: GROUP_BY_MAX_PAR2(Person,
((country)), age

)

Code Snippet:

#define name, cols, max_col) \
A\
parlay: :sequence< ##namex> sort_seq(name.begin name.end

merge_sort row_##namex left, row_##namex right \

return

parlay::tabulate(sort_seq.size i return i \
= parlay::tabulate(sort_seq.size i return sort_seqli
max_co'l
= parlay::filter ele return (ele ==
sort_seq sort_seq =1
\
= parlay::tabulate(boundaries_seq.size
st_ind boundaries_seqli \

en_ind =5 \

if(i + 1 == boundaries_seq.size

en_ind sort_seq.size
\
else \

\
en_ind boundaries_seq[i+1

m = parlay::make_monoid
if(left >= right) \
\
return left; \

\
return right; \

\
max_v = parlay::reduce(max_col_seq.cut(st_ind, en_ind

return max_v; \
\
if(sort_seq.size = 09) \
\

L

std::cout << "Max_
std::cout << "\n"; \
for = @; i<boundaries_seq.size
\
std::cout << group_max_seq
sort_seqlboundaries_seq
\
std << "\n"; \
\
std::cout << "\n\n"; \

The below graph summarizes the performance comparison between GROUP_BY_MAX,
GROUP_BY_MAX_PAR, and GROUP_BY_MAX_PAR2 for a query to group the rows of the
Person relation (of 10000 rows) based on (country) and retrieve the maximum age for these
groups:

Group by Max Query Comparison: Sequential vs Parallel

—e— Parallel Version1
81 -m- parallel Version2 ~— o e==mmTTTT

Speedup (Sequential / Parallel)

1 2 4 8 16 32
Number of Threads

It can be observed that the Parallel Version 2 performs better than the Parallel Version 1
with the increase in number of threads. This could be because the parallel version 2
algorithm using primitives like tabulate, filter and reduce inherently contains more scope for
parallelism as compared to parallel version 1 which is essentially sequential after the initial
parallel sort.

o GROUP_BY_SUM Operation: This is used to group the table based on the
mentioned columns and aggregate the sum of the mentioned column for
these groups. This generates the following code in-place using macro
programming:

= code to create a copy of the vector of rows of the table
= code to call the sequential sort function on the above copy vector
with a comparator generated for comparing the mentioned columns
= for loop iterating through the vector of attribute strings to display the
column names for the table
= for loop iterating through the sorted vector of rows of the table to
identify groups and aggregate the sum of the mentioned column
Macro Signature: GROUP_BY_SUM(name, cols, sum_col)
Example Usage: GROUP_BY_SUM(Person,
((country)), salary

)

Code Snippet:

#define GROUP_BY_SUM(name, cols, sum_col) \
{\

std::vector<row_##namex> sort_vec(name.begin(), name.end()); \

std::sort(sort_vec.begin sort_vec.end row_##namex left, row_##namex right \

return
\
if(sort_vec.size 1= 0) \
\
std::cout << "Sum_

L

std::cout << "\n"; \
##namex = sort_vec|0 \
= sort_vec|0 sum_col; \

=1 <sort_vec.size ++ \

sort_vec

+= sort_vec sum_col; \

<< ll\nll \
= sort_vec sum_col; \

= sort_vec \

\
std::cout <<

std::cout << "\n\n"; \

o GROUP_BY_SUM_PAR Operation: This is parallel version 1 of the above
GROUP_BY_SUM Query and is used to group the table based on the
mentioned columns and aggregate the sum of the mentioned column for
these groups. This generates the following code in-place using macro
programming:

= code to create a copy of the vector of rows of the table

= code to call the parallel merge sort function on the above copy vector
with a comparator generated for comparing the mentioned columns

= for loop iterating through the vector of attribute strings to display the
column names for the table

= for loop iterating through the sorted vector of rows of the table to
identify groups and aggregate the sum of the mentioned column

Macro Signature: GROUP_BY_SUM_PAR(name, cols, sum_col)

Example Usage: GROUP_BY_SUM_PAR(Person,
((country)), salary

Code Snippet:

#define name, cols, sum_col) \
\

parlay: :sequence< ##namex> sort_seq(name.begin name.end

merge_sort row_##namex left, row_##namex right \

return
\
if(sort_seq.size = 09) \
\
std::cout << "Sum_" <<

std::cout << "\n"; \
##namex = sort_seql@ \
= sort_seql0@ sum_col; \

= 1; i<sort_seq.size ++1i) \

+= sort_seq sum_col; \

<< ll\nll \
= sort_seq sum_col; \

= sort_seq \

\
std::cout <<

std::cout << "\n\n"; \

o GROUP_BY_SUM_PAR2 Operation: This is parallel version 2 of the above
GROUP_BY_SUM Query and is used to group the table based on the
mentioned columns and aggregate the sum of the mentioned column for
these groups. This generates the following code in-place using macro
programming:

= code to create a copy of the vector of rows of the table
= code to call the parallel merge sort function on the above copy vector
with a comparator generated for comparing the mentioned columns
= code to retrieve the indices of the rows of the table that have unique
values for the mentioned fields using parallel tabulate and parallel
filter
= code to retrieve the sum of the mentioned column for the groups
corresponding to the above unique rows using parallel tabulate and
parallel reduce
= for loop iterating through the vector of attribute strings to display the
column names for the table
= for loop to display groups and their aggregated sum
Macro Signature: GROUP_BY_SUM_PAR2(name, cols, sum_col)
Example Usage: GROUP_BY_SUM_PAR2(Person,
((country)), salary

Code Snippet:

#define name, cols, sum_col) \
A\
parlay: :sequence< ##namex> sort_seq(name.begin name.end

merge_sort row_##namex left, row_##namex right

return
\
= parlay::tabulate(sort_seq.size i return i \

= parlay::tabulate(sort_seq.size i return sort_seqli

= parlay::filter ele return (ele ==
sort_seq sort_seq =1
\
= parlay::tabulate(boundaries_seq.size
st_ind = boundaries_seqli \
en_ind = -1; \
if(i + 1 == boundaries_seq.size
\
en_ind = sort_seq.size
\
else \
\
en_ind = boundaries_seq[i+1

m = parlay::make_monoid left right return
left + right 0 \

sum_v = parlay::reduce(sum_col_seq.cut(st_ind, en_ind

return sum_v; \
\

if(sort_seq.size = 09) \
\

std::cout << "Sum_" <<

std::cout << '"\n"; \

for = @; i<boundaries_seq.size
\

std::cout << group_count_seq = \

sort_seqlboundaries_seq
\
std << "\n"; \
\
std::cout << "\n\n"; \

The below graph summarizes the performance comparison between GROUP_BY_SUM ,
GROUP_BY_SUM_PAR, and GROUP_BY_SUM_PAR?2 for a query to group the rows of the
Person relation (of 10000 rows) based on (country) and retrieve the sum of the salary for
these groups:

Group by Sum Query Comparison: Sequential vs Parallel

—e— Parallel Version1
84 -M- Parallel Version2 =TT IO

Speedup (Sequential / Parallel)

1 2 4 8 16 32
Number of Threads

It can be observed that the Parallel Version 2 performs better than the Parallel Version 1
with the increase in number of threads. This could be because the parallel version 2
algorithm using primitives like tabulate, filter and reduce inherently contains more scope for
parallelism as compared to parallel version 1 which is essentially sequential after the initial
parallel sort.

o GROUP_BY_AVG Operation: This is used to group the table based on the
mentioned columns and aggregate the average of the mentioned column for
these groups. This generates the following code in-place using macro
programming:

= code to create a copy of the vector of rows of the table
= code to call the sequential sort function on the above copy vector
with a comparator generated for comparing the mentioned columns
= for loop iterating through the vector of attribute strings to display the
column names for the table
= for loop iterating through the sorted vector of rows of the table to
identify groups and aggregate the average of the mentioned column
Macro Signature: GROUP_BY_AVG(name, cols, avg_col)
Example Usage: GROUP_BY_AVG(Person,
((country)), salary

Code Snippet:

#define name, cols, avg_col) \

\
std::vector< ##namex> sort_vec(name.begin name.end \

std::sort(sort_vec.begin sort_vec.end row_##namex left, row_##namex right \

return
\
if(sort_vec.size 1=0) \
\
std::cout << "Avg_" <<

std::cout << "\n"; \
##namex = sort_vec|[0 \
= sort_vec|0 avg_col; \
=1; \

=1 <sort_vec.size

+= sort_vec avg_col; \
\

<< "\n"; \

= sort_vec avg_col; \
=1; \

= sort_vec

\
std::cout <<

std::cout << "\n\n"; \

o GROUP_BY_AVG_PAR Operation: This is parallel version 1 of the above
GROUP_BY_AVG Query and is used to group the table based on the
mentioned columns and aggregate the average of the mentioned column for
these groups. This generates the following code in-place using macro
programming:

= code to create a copy of the vector of rows of the table

= code to call the parallel merge sort function on the above copy vector
with a comparator generated for comparing the mentioned columns

= for loop iterating through the vector of attribute strings to display the
column names for the table

= for loop iterating through the sorted vector of rows of the table to
identify groups and aggregate the average of the mentioned column

Macro Signature: GROUP_BY_AVG_PAR(name, cols, avg_col)
Example Usage: GROUP_BY_AVG_PAR(Person,
((country)), salary

)

Code Snippet:

#define name, cols, avg_col) \

A\
parlay: :sequence< ##namex> sort_seq(name.begin name.end

merge_sort row_##namex left, row_##namex right \

return
\
if(sort_seq.size = 09) \
\
std::cout << "Avg_" <<

std::cout << "\n"; \
##namex = sort_seql@ \
= sort_seql0@ avg_col; \
=1; \

<sort_seq.size

sort_seq

+= sort_seq avg_col; \
\

<< ||\n|| \

= sort_seq avg_col; \

= 1l A\

= sort_seq

\
std::cout <<

std::cout << "\n\n"; \

o GROUP_BY_AVG_PAR2 Operation: This is parallel version 2 of the above
GROUP_BY_AVG Query and is used to group the table based on the
mentioned columns and aggregate the average of the mentioned column for
these groups. This generates the following code in-place using macro
programming:

= code to create a copy of the vector of rows of the table
= code to call the parallel merge sort function on the above copy vector
with a comparator generated for comparing the mentioned columns
= code to retrieve the indices of the rows of the table that have unique
values for the mentioned fields using parallel tabulate and parallel
filter
= code to retrieve the average of the mentioned column for the groups
corresponding to the above unique rows using parallel tabulate and
parallel reduce
= for loop iterating through the vector of attribute strings to display the
column names for the table
= for loop to display groups and their aggregated average
Macro Signature: GROUP_BY_AVG_PAR2(name, cols, avg_col)
Example Usage: GROUP_BY_AVG_PAR2(Person,
((country)), salary

)

Code Snippet:

#define name, cols, avg_col) \
A\
parlay: :sequence< ##namex> sort_seq(name.begin name.end

merge_sort row_##namex left, row_##namex right \

return
\

= parlay::tabulate(sort_seq.size i return i \

= parlay::tabulate(sort_seq.size i return sort_seqli

= parlay::filter ele return
sort_seq
\
= parlay::tabulate(boundaries_seq.size
st_ind boundaries_seqli \
en_ind -1; \
if(i + 1 == boundaries_seq.size
\
en_ind sort_seq.size
\
else \
\
en_ind boundaries_seq[i+1

m = parlay::make_monoid left
left + right 0 \
sum_v parlay::reduce(avg_col_seq.cut(st_ind, en_ind
count_v en_ind - st_ind; \
avg_v sum_v/count_v; \
return avg_v; \
\

if(sort_seq.size 1=09) \
\
std::cout << "Avg_" <<

std::cout << "\n"; \
for = @; i<boundaries_seq.size
\

std::cout << group_avg_seq

ele == 0

sort_seq =1

right

sort_seqlboundaries_seq

\
std << "\n"; \
\
std::cout << "\n\n"; \

return

The below graph summarizes the performance comparison between GROUP_BY_AVG,
GROUP_BY_AVG_PAR, and GROUP_BY_AVG_PAR?2 for a query to group the rows of the
Person relation (of 10000 rows) based on (country) and retrieve the average of the salary for
these groups:

Group by Avg Query Comparison: Sequential vs Parallel
—&— Parallel Version1 -
8 -m- Parallel Version2 . em===TTTTT
7 4
]
S 6
©
. E—
2 5-
c
o
3
T
Q
@ 41
e
]
?
£3]
w
2
14
1 2 4 8 16 32
Number of Threads

It can be observed that the Parallel Version 2 performs better than the Parallel Version 1
with the increase in number of threads. This could be because the parallel version 2
algorithm using primitives like tabulate, filter and reduce inherently contains more scope for
parallelism as compared to parallel version 1 which is essentially sequential after the initial
parallel sort.

2. Auxiliary Data Structures and Functions:

e B-Tree: A B-Tree data structure was created to use as an indexing data structure for
the table based on its primary key fields

o BTreeNode Class: Represents a node of the B-Tree

= |t contains the following fields: an array of keys, the minimum degree,
an array of child pointers, current number of keys and Boolean to
denote a leaf

= |ft" is the minimum degree, each node contains between t and 2*t-1
keys and 2*t child pointers

= |tincludes a constructor, destructor, function to traverse through the
B-Tree nodes, function to search for a key based on equality condition,
function to insert into a non-full node, function to split a child node
and a function to traverse through the B-Tree nodes to retrieve the
keys falling within a certain range

Code Snippet for search based on equality condition:

< T>
std::pair<BTreeNode<T>%, T> BTreeNode<T>::search_eq(T &k, std::function<
T&)> comp)

0;

while (i < n && comp(keys[il, k)) i++;

if (i < n && !comp(k, keys[i]) && !'comp(keys[il, k))
return { , keys[il};

if (leaf)
return { , TO) 3

return C[i]->search_eq(k, comp);

Code Snippet for traversal through the B-Tree nodes to retrieve the
keys falling within a certain range:

< T>

BTreeNode<T>:: range_traverse(T &ge_val, T &le_val, std::function<
T&)> comp)

0;

while (i < n && comp(keys[i], ge_val))
{

i++;

while (i < n && !'comp(le_val, keys[il))
{

if (!leaf)

{

Cl[il—>range_traverse(ge_val, le_val, comp);

boost::pfr::for_each_field(x(keys[il), [](
std::cout << field << "; ";

});

std::cout << "\n";

++1;

(!leaf)

Cl[il—>range_traverse(ge_val, le_val, comp);

o BTree Class: Represents the B-Tree
= |t contains the following fields: BTreeNode pointing to root and the
degree of the B-Tree (3 is the degree used in the queries above)
= |t includes a constructor, destructor, function to traverse the tree,
insert into the tree, and a function to perform a range traversal

e Parallel Merge Sort:

o A Parallel merge sort was implemented and is in turn used by many parallel
queries that require sorting

o It switches to a sequential sort when the block size is below 100

o Itincludes a parallel merge that uses the median of the larger sorted sub-
block to perform binary search on the smaller sorted sub-block and
recursively merges the resultant splits accordingly

o It switches to a sequential merge when the size of the 2 sub-blocks under
consideration is below 1000 cumulatively

3. Functional Testing

e Functional Testing was performed to verify the behaviour of the different functions
implemented and ensure that the sequential and parallel versions of a particular
function are equivalent in terms of their correctness criterion

e A Person Relation was created consisting of the fields: id, first name, last name, age,
country, salary

e 100 rows were inserted into the above relation

e The sequential and parallel versions (including version 1 and 2 for the group by
aggregate queries) of different functions were invoked on the above relation

e The generated outputs for the sequential and parallel versions were compared after
sorting

e It was verified that the outputs for the sequential and parallel versions are
equivalent, hence denoting their correctness

4. Performance Comparison

e Performance Testing was done to compare the performance of the sequential and
parallel versions of the different implemented functions

e The performance results were generated on the crunchy5.cims.nyu.edu machine with
the following configuration:

o Sockets: 4

Cores per socket: 8

Threads per core: 2

CPUs: 64 (4*8*2)

Architecture: x86_64

O O O O

A Person Relation was created consisting of the fields: id, first name, last name, age,
country, salary

10000 rows were inserted into the above relation

The sequential and parallel versions (including version 1 and 2 for the group by
aggregate queries) of different functions were invoked on the above relation
Instrumentation code was added to record the start and end timestamps of the
functions

The parallel versions were executed for varying number of threads, namely,
1,2,4,8,16,32 threads

The elapsed duration was computed and used to generate speedup graphs

Challenges Encountered

The key challenge that was encountered was related to providing a working interface
to the different CRUD operations which accurately generates the required code while
also accounting for the different cases. In this regard, various solutions and
workarounds were implemented in order to effectively handle this such as using
macro programming and pre-processing directives provided by the C++ Boost library.
It was attempted to implement the range query (>=x and <=y) on a primary key using
2 split operations on the B-Tree such that the first split generates a new tree with
values >= x. This new tree is split again to generate values <=y. It was possible to get
a working and correct implementation in this direction. However, while executing for
larger number of records, it triggered a few edge cases that could not be resolved in
time. Therefore, this implementation has not been considered for the performance
comparison (the implemented functions are still retained in the submitted source
code: range_query, split_ge and split_le functions, but they are not used). An
alternate range traversal function was implemented and used for the performance
comparison.

Source Code

The Source Code for this project can be found on the following GitHub Repository:

https://github.com/darshand15/PPA_Project

The implementation of the parallel relational database is provided as a header file
that can just be included in the client to avail the different functionalities. This
header file, named "header_par_db.h" is placed inside the ./include directory

The ./include directory also contains parlaylib, which is used to avail the parallel fork-
join interface in C++

Functional Testing
o Functional Testing can be performed by running the script, ./run_script.sh
within the ./functional_testing directory
o If the diff output from the script shows that the generated sequential and
parallel outputs were identical, it denotes that the Functional Testing was
successful

o The recorded outputs are contained in the generated
/functional_testing/output directory

o It has to be noted that Functional Testing uses a slightly different version of
the "header_par_db.h", named "header_par_db_ft.h" contained in
the ./functional_testing directory. This is because the parallel sort
in "header_par_db_ft.h" switches to a sequential merge and sequential sort
for smaller block sizes as compared to the header in ./include, which is
optimized for performance. This ensures that parallel behaviour is invoked
and verified despite the functional tests having fewer records.

Performance Testing
o Performance Testing can be performed by running the script, ./run_script.sh
within the ./performance_testing directory
o The recorded timing measurements are contained in the generated
./performance_testing/timing_measurements directory

generate_insert.py inside ./generate_data directory can be used to generate input
data

The ./generate_graphs directory contains the code to generate graphs

The generated graphs are contained in the ./generate_graphs/graphs directory

