
Programming Parallel Algorithms (PPA-S25)
Project Report

Project Title: “Design and Implementation of a Parallel

Relational Database from scratch”

Name: Darshan Dinesh Kumar
NetID: dd3888

University ID: N10942768

Project Group Members:

1. Darshan Dinesh Kumar (NetID: dd3888, University ID: N10942768)

GitHub Repository Link: https://github.com/darshand15/PPA_Project

Introduction and Motivation

The exponential growth of data, driven by innovations like the internet, smartphones, and
personal computers, to name a few, has made databases a cornerstone of modern software
applications. As data scales up, storing, managing and querying this data efficiently has
become increasingly complex. In this regard, databases serve as the backbone to store,
manage, and retrieve vast amounts of structured information in an organized manner.
However, designing large-scale, efficient databases presents many challenges in terms of
both design and performance.
With the diminishing returns of Moore’s Law—which historically predicted continuous
improvements in processor speed and computing power through more transistors—there
has been a significant shift towards leveraging Parallel Computing. This shift has become
increasingly pronounced with the rise of multicore and multiprocessor systems, which have
become ubiquitous in modern hardware. Thus, parallelism offers a potential solution for
improving database performance by utilizing the power of multiple cores and processors.
This project is precisely such an effort to design and implement a Relational Database from
scratch and a subset of its many operations while incorporating the various concepts
gleaned from our “Programming Parallel Algorithms” course and related ideas inherent to
the domain of Parallel Computing.

Related Work

The ubiquity and pervasive nature of databases can be contributed to the significant
research and development towards various kinds of databases as summarized below:

• Rela?onal Databases (SQL-based): RelaZonal databases store data in structured
tables with rows and columns, using SQL (Structured Query Language) for querying.

Examples include MySQL, PostgreSQL, SQLite, Microso^ SQL Server, and Oracle
Database.

• NoSQL Databases (non-rela?onal): NoSQL databases are designed for flexibility,

scalability, and handling unstructured or semi-structured data. Examples include
MongoDB, Redis, Cassandra, CouchDB, and DynamoDB.

• Graph Databases: Graph databases are opZmized for managing and querying

relaZonships between data points. Examples include Neo4j, Amazon Neptune, and
OrientDB.

• Time-Series Databases: Time-series databases are specialized for storing and

querying data that is Zme-stamped, such as sensor logs, financial data, or monitoring
metrics. Examples include InfluxDB, TimescaleDB, and Prometheus.

• Cloud-na?ve / Serverless Databases: These databases are designed to scale in the

cloud and o^en handle infrastructure and provisioning automaZcally. Examples
include Firebase RealZme Database, Firestore, Amazon Aurora, and PlanetScale.

• Embedded / Lightweight Databases: Embedded databases are designed to be

bundled inside applicaZons with no need for a separate server process. Examples
include SQLite, LevelDB, and RocksDB.

Inspiration

This project is inspired by the well-known SQL-based Relational Databases. It has been
attempted to simulate the typical CRUD (Create, Read, Update, Delete) operations of these
SQL-based Relational Databases while trying to incorporate various aspects related to
Parallelism as part of the design and implementation of the Database. The Textbook titled
“Fundamentals of Database Systems” by Ramez Elmasri and Shamkant B. Navathe, 7th
Edition, Pearson Publications has been used as the primary reference for various concepts
related to Database Systems.

Goals of the Project:

The following are the goals of the project:

• Design and implement a parallel relational database supporting a subset of the typical

CRUD (Create, Read, Update, Delete) operations, including queries like different variants
of the Select Query, Update Query, Insert Into Query, Delete Query, Order By Query,
Group By Query, Aggregate Queries like Count, Min, Max, Sum, Average.

• Incorporate aspects related to Parallelism for various candidate queries as below:

o Select query based on the primary key field: As part of the iniZal table creaZon and

while performing the operaZon to set the primary key, an indexing data structure

such as a B-Tree can be created. This B-Tree can contain the primary key fields and a
pointer to the corresponding row. Thus, the B-Tree would be ordered based on the
primary key fields. Therefore, if the select query is based on the primary key field,
this indexing data structure would allow for efficient retrieval. It could be explored to
see how variants of the Select Query can be opZmized using the B-Tree indexing data
structure. This could be in relaZon to searching for a specific row/tuple of the table
based on a parZcular value of the primary key field or searching for rows/tuples
based on a range of values of the primary key field.

o Select query based on non-primary key fields: Here, the table could be divided into
different chunks that can be parallelly searched through to retrieve the different rows
for the Select query. This could use a mechanism similar to the parallel_for primiZve.
Further, as the retrieved rows must be displayed, explicit care must be taken while
prinZng out the rows parallelly. This could be accounted for by introducing an
addiZonal data structure to contain the indices of the rows to be printed. This data
structure could be handled through a lock to push the indices and then finally used
to sequenZally print the rows.

o Order By Opera?on: The Order By operaZon that orders the rows of the table based
on the menZoned column(s) could be parallelized. As this query would essenZally
perform the sort operaZon, it could be explored to implement the sort in parallel by
using a method similar to parallel merge sort.

o Group By and Aggregate Opera?ons: The Group By OperaZon usually involves
grouping the tuples based on some condiZon and then applying some aggregate
operaZon like Count, Min, Max, Sum, Average. Therefore, it could be explored to see
how this can be parallelized by using a parallel sort iniZally to group the tuples and
then performing the aggregate operaZons parallelly using the parallel primiZves like
filter, tabulate and reduce.

• Perform Func?onality Tes?ng to verify the behaviour of the different operaZons that

have been implemented. Further, the parallel implementaZons should be thoroughly
tested and compared with their sequenZal counterparts to verify their correctness.

• Present a Performance comparison and Evalua?on showing the benefits due to the
implemented Parallelism. For example, speedup comparison could be shown to highlight
the benefits of the different queries with parallelism implemented as compared to their
sequenZal counterparts.

Summary of the outcomes/results of the Project:

The outcomes/results of the Project can be summarized as follows:

• A parallel relaZonal database supporZng a subset of the typical CRUD (Create, Read,
Update, Delete) operaZons has been designed and implemented.

• Various CRUD queries fundamental to the funcZonality of a Database have been
implemented as below:

o CreaZng a Table
o Sejng a Primary Key
o InserZng rows into the table
o Enforcing the Primary Key Constraint
o UpdaZng the rows of the table including condiZonal updaZon
o DeleZng the rows of the table including condiZonal deleZon
o Different variants of the Select Query including SelecZng all the columns of all

the rows, SelecZng all the columns of rows meeZng a condiZon, SelecZng a
subset of the columns of all rows, SelecZng a subset of the columns of rows
meeZng a condiZon.

• Various aspects related to Parallelism have been idenZfied and implemented as
follows:

o Select Search Query based on equality of primary key field: Here, a B-Tree
has been implemented for indexing the table based on the primary key field.
It was observed that the Select Search Query using the B-Tree
implementaZon performed approximately 20x faster than the corresponding
sequenZal implementaZon.

o Select Range Query based on primary key field: Here, a B-Tree has been
implemented for indexing the table based on the primary key field. It was
observed that the Select Range Query using the B-Tree implementaZon
performed approximately 2x faster than the corresponding sequenZal
implementaZon.

o Select all Columns for rows mee?ng a condi?on: A parallel for loop was used
to implement this query. It was observed that the speedup was subopZmal
(below 1) in this case with the speedup further decreasing with the increase
in the number of threads. The main reason is that as this query requires
displaying of the rows, the implementaZon uses a lock-based data structure
to serialize the prints. As these overheads due to lock-contenZon are
significant, there are no benefits due to parallelism for this query and it in fact
worsens the performance as compared to the sequenZal version.

o Select a subset of the Columns for rows mee?ng a condi?on: A parallel for
loop was used to implement this query. It was observed that the speedup was
subopZmal (below 1) in this case with the speedup further decreasing with
the increase in the number of threads. The main reason is that as this query
requires displaying of the rows, the implementaZon uses a lock-based data
structure to serialize the prints. As these overheads due to lock-contenZon
are significant, there are no benefits due to parallelism for this query and it in
fact worsens the performance as compared to the sequenZal version.

o Order by Ascending Query: A Parallel merge sort was used to implement this
query. It was observed that the Parallel version achieved a maximum
speedup of 2.2 for 16 threads, thereby denoZng that there were some
benefits due to parallelism.

o Order by Descending Query: A Parallel merge sort was used to implement
this query. It was observed that the Parallel version achieved a maximum
speedup of 1.36 for 8 threads, thereby denoZng that there were some
benefits due to parallelism.

o Group by Count Query: Here, two different parallel versions were
implemented:

§ Parallel Version 1: This iniZally performs a parallel merge sort followed
by sequenZal traversal of the sorted rows to aggregate the count of
the groups. This version achieves a maximum speedup of 6 using 32
threads as compared to the sequenZal version.

§ Parallel Version 2: This iniZally performs a parallel merge sort followed
by a parallel algorithm to aggregate the count of the groups using
parallel primiZves like tabulate and filter. This version achieves a
maximum speedup of 5.5 using 32 threads as compared to the
sequenZal version.

The Parallel Version 1 performs slightly beler than the Parallel Version
2. This could be because the overheads introduced by version 2’s
algorithm which requires the creaZon of addiZonal data structures
using tabulate and filter is quite considerable that it is outweighing
any benefits due to parallelism.

o Group by Min Query: Here, two different parallel versions were
implemented:

§ Parallel Version 1: This iniZally performs a parallel merge sort followed
by sequenZal traversal of the sorted rows to aggregate the min of the
groups. This version achieves a maximum speedup of 5.3 using 32
threads as compared to the sequenZal version.

§ Parallel Version 2: This iniZally performs a parallel merge sort followed
by a parallel algorithm to aggregate the min of the groups using
parallel primiZves like tabulate, filter and reduce. This version
achieves a maximum speedup of 6.5 using 32 threads as compared to
the sequenZal version.

The Parallel Version 2 performs beler than the Parallel Version 1. This

could be because the parallel version 2 algorithm using primiZves like
tabulate, filter and reduce inherently contains more scope for
parallelism as compared to parallel version 1 which is essenZally
sequenZal a^er the iniZal parallel sort.

o Group by Max Query: Here, two different parallel versions were
implemented:

§ Parallel Version 1: This iniZally performs a parallel merge sort followed
by sequenZal traversal of the sorted rows to aggregate the max of the
groups. This version achieves a maximum speedup of 5.7 using 32
threads as compared to the sequenZal version.

§ Parallel Version 2: This iniZally performs a parallel merge sort followed
by a parallel algorithm to aggregate the max of the groups using
parallel primiZves like tabulate, filter and reduce. This version
achieves a maximum speedup of 8.1 using 32 threads as compared to
the sequenZal version.

The Parallel Version 2 performs beler than the Parallel Version 1. This
could be because the parallel version 2 algorithm using primiZves like
tabulate, filter and reduce inherently contains more scope for
parallelism as compared to parallel version 1 which is essenZally
sequenZal a^er the iniZal parallel sort.

o Group by Sum Query: Here, two different parallel versions were
implemented:

§ Parallel Version 1: This iniZally performs a parallel merge sort followed
by sequenZal traversal of the sorted rows to aggregate the sum of the
groups. This version achieves a maximum speedup of 6 using 32
threads as compared to the sequenZal version.

§ Parallel Version 2: This iniZally performs a parallel merge sort followed
by a parallel algorithm to aggregate the sum of the groups using
parallel primiZves like tabulate, filter and reduce. This version
achieves a maximum speedup of 8.1 using 32 threads as compared to
the sequenZal version.

The Parallel Version 2 performs beler than the Parallel Version 1. This
could be because the parallel version 2 algorithm using primiZves like
tabulate, filter and reduce inherently contains more scope for
parallelism as compared to parallel version 1 which is essenZally
sequenZal a^er the iniZal parallel sort.

o Group by Average Query: Here, two different parallel versions were
implemented:

§ Parallel Version 1: This iniZally performs a parallel merge sort followed
by sequenZal traversal of the sorted rows to aggregate the average of
the groups. This version achieves a maximum speedup of 5.5 using 32
threads as compared to the sequenZal version.

§ Parallel Version 2: This iniZally performs a parallel merge sort followed
by a parallel algorithm to aggregate the average of the groups using
parallel primiZves like tabulate, filter and reduce. This version
achieves a maximum speedup of 8.3 using 32 threads as compared to
the sequenZal version.

The Parallel Version 2 performs beler than the Parallel Version 1. This
could be because the parallel version 2 algorithm using primiZves like
tabulate, filter and reduce inherently contains more scope for
parallelism as compared to parallel version 1 which is essenZally
sequenZal a^er the iniZal parallel sort.

Detailed Description of the technical details of the Project:

The technical details of the project are elaborated under the following categories:

1. Design and implementa?on of a Parallel Rela?onal Database with a subset of the

typical CRUD (Create, Read, Update, Delete) opera?ons:

• As the project was decided to be developed in C++, there were two different
strategies under consideraZon with regards to the implementaZon:

i. A template based programming strategy with the generaZon of a new C++
program to be compiled and executed

ii. A pre-processor based macro programming strategy with the expansion of
the different operaZons in-place

• The pre-processor based macro programming strategy was used as this only requires

the inclusion of a header file in the client program rather than generaZng a
completely new C++ program that needs to be compiled and executed

• Consequently, every implemented operaZon is effecZvely a macro that gets
expanded in-place with the required code for the operaZon under consideraZon

• The C++ Parlay Library is used to avail the parallel fork-join interface in C++
• The C++ Boost Library is used to aid in Macro Programming
• All the graphs are generated for a Person relaZon of 10000 rows containing id, first

name, last name, age, country, salary as its fields

• A subset of the typical CRUD (Create, Read, Update, Delete) operaZons inherent to
SQL-based RelaZonal Databases were designed and implemented as detailed below:

o CREATE_TABLE OperaZon: This is used to create a table/relaZon in the
database with the menZoned alributes. For every table/relaZon in the
database, the following code is generated in-place using macro programming:

§ A struct represenZng a row/tuple of this relaZon with the appropriate
alributes and their types

§ A vector of pointers to the above row struct, essenZally represenZng
the table as a collecZon of rows

§ A vector of strings represenZng the alribute names to provide
support while displaying the table

§ A struct with bools associated with every field to denote if they are
part of the Primary Key or not. These booleans are iniZalized to false.

§ A B-Tree of minimum degree 3
Macro Signature: CREATE_TABLE(name, fields)
Example Usage: CREATE_TABLE(Person,
 ((int, id))
 ((std::string, name))
 ((std::string, mob_no))
)

Code Snippet:

#define FIELD(r, data, elem) \
 BOOST_PP_TUPLE_ELEM(2, 0, elem) BOOST_PP_TUPLE_ELEM(2, 1, elem);

#define CREATE_TABLE_STRUCT(name, fields) \
 struct row_##name \

 { \
 BOOST_PP_SEQ_FOR_EACH(FIELD, _, BOOST_PP_VARIADIC_TO_SEQ fields) \
 };\
 typedef struct row_##name row_##name;

#define CREATE_TABLE(name, fields) \
 CREATE_TABLE_STRUCT(name, fields) \
 std::vector<row_##name*> name; \
 std::vector<std::string> attr_##name; \

 BOOST_PP_SEQ_FOR_EACH(PUSH_ATTR_NAME, attr_##name, BOOST_PP_VARIADIC_TO_SEQ fields) \
 CREATE_KEY_STRUCT(name, fields) \
 BTree<row_##name*> pk_btree_##name(3);

o SET_PRIMARY_KEY OperaZon: This is used to set the Primary Key for a
parZcular table/relaZon in the database. This generates the following code in-
place using macro programming:

§ IniZalizes the bools associated with the menZoned fields to true
denoZng that they are part of the primary key for this table.

§ Generates a comparator based on the primary key fields. This
comparator is fundamental to the funcZonaliZes of the B-Tree
associated with the primary key fields.

Macro Signature: SET_PRIMARY_KEY(name, cols)
Example Usage: SET_PRIMARY_KEY(Person, ((id)))

Code Snippet:

#define PK_CMP_ELSE_IF(r, data, elem) \

 else if(left->BOOST_PP_TUPLE_ELEM(1, 0, elem) != right->BOOST_PP_TUPLE_ELEM(1, 0, elem))
\
 { \
 return left->BOOST_PP_TUPLE_ELEM(1, 0, elem) < right->BOOST_PP_TUPLE_ELEM(1, 0,
elem); \

 }

#define CREATE_PK_CMP(name, cols) \
 auto cmp_##name = [](row_##name* left, row_##name* right) \
 { \

 if(false){}\
 BOOST_PP_SEQ_FOR_EACH(PK_CMP_ELSE_IF, _, BOOST_PP_VARIADIC_TO_SEQ cols) \
 return false; \
 };

#define KEY_BOOL_STRUCT_INIT_TRUE(r, data, elem) \
 data.BOOST_PP_TUPLE_ELEM(1, 0, elem) = true;

#define SET_PRIMARY_KEY(name, cols) \
 BOOST_PP_SEQ_FOR_EACH(KEY_BOOL_STRUCT_INIT_TRUE, key_bool_var_##name[0],
BOOST_PP_VARIADIC_TO_SEQ cols) \
 CREATE_PK_CMP(name, cols)

o INSERT_INTO OperaZon: This is used to insert rows of values into the table.
This generates the following code in-place using macro programming:

§ An instance of the row struct is created and its fields are populated
with the menZoned values

§ The primary key constraint is enforced in order to verify that no two
rows in the table have the same set of values for the alributes
defined as the primary key.

§ The row is inserted into the vector for the table and into the B-Tree
only if the primary key constraint is not violated.

§ If the primary key constraint is violated, the inserZon of the row is
skipped and an appropriate message is output to the screen a^er
which the program flow conZnues.

Macro Signature: INSERT_INTO(name, values)
Example Usage: INSERT_INTO(Person,
 ((id, 0))
 ((name, "John"))
 ((mob_no, "12345"))
)

Code Snippet:

#define INSERT_FIELDS_INTO_ROW(r, data, elem) \

 data->BOOST_PP_TUPLE_ELEM(2, 0, elem) = BOOST_PP_TUPLE_ELEM(2, 1, elem);

#define INSERT_INTO(name, values) \
 { \
 row_##name *tab_row = new row_##name; \

 BOOST_PP_SEQ_FOR_EACH(INSERT_FIELDS_INTO_ROW, tab_row, BOOST_PP_VARIADIC_TO_SEQ
values) \
 bool primary_key_constraint_viol = false; \
 ENFORCE_PRIMARY_KEY_CONSTRAINT(name, values, primary_key_constraint_viol) \
 if(!primary_key_constraint_viol) \

 { \
 name.push_back(tab_row); \
 pk_btree_##name.insert(tab_row, cmp_##name); \
 } \
 else \

 { \
 std::cout << "Insertion of row skipped as Primary Key Constraint would be
violated\n"; \
 } \
 }

o SELECT_ALL OperaZon: This is used to retrieve all the rows from the
menZoned table. This generates the following code in-place using macro
programming:

§ for loop iteraZng through the vector of alribute strings to display the
column names for the table

§ for loop iteraZng through the vector of rows of the table to display the
field values for each of these rows

Macro Signature: SELECT_ALL(name)
Example Usage: SELECT_ALL(Person)

Code Snippet:

#define SELECT_ALL(name) \
 for(auto ele_attr : attr_##name) \
 { \

 std::cout << ele_attr << "; "; \
 } \

 std::cout << "\n"; \
 for(auto row_trav : name) \
 { \

 boost::pfr::for_each_field(*row_trav, [](const auto& field) { \
 std::cout << field << "; "; \
 }); \
 std::cout << "\n"; \
 }

o SELECT_ALL_COND OperaZon: This is used to retrieve specific rows from the
menZoned table based on the menZoned condiZons. This generates the
following code in-place using macro programming:

§ for loop iteraZng through the vector of alribute strings to display the
column names for the table

§ for loop iteraZng through the vector of rows of the table to display the
field values for each of these rows saZsfying the menZoned
condiZons.

Macro Signature: SELECT_ALL_COND(name, cond_lhs, cond_cmp, cond_rhs)
Example Usage: SELECT_ALL_COND(Person, id, >=, 1)

Code Snippet:

#define SELECT_ALL_COND(name, cond_lhs, cond_cmp, cond_rhs) \
 for(auto ele_attr : attr_##name) \
 { \

 std::cout << ele_attr << "; "; \
 } \
 std::cout << "\n"; \
 for(auto row_trav : name) \
 { \

 if(row_trav->cond_lhs cond_cmp cond_rhs) \
 { \
 boost::pfr::for_each_field(*row_trav, [](const auto& field) { \
 std::cout << field << "; "; \

 }); \
 std::cout << "\n"; \
 } \
 }

o SELECT_ALL_COND_PAR OperaZon: This is a parallel version of the above

SELECT_ALL_COND query and is used to retrieve specific rows from the
menZoned table based on the menZoned condiZons. This generates the
following code in-place using macro programming:

§ for loop iteraZng through the vector of alribute strings to display the
column names for the table

§ parallel for loop iteraZng through the vector of rows of the table to
push the indices of the rows saZsfying the condiZons into a vector

a^er acquiring a mutex lock. The lock is used to serialize the prints
because if not, the prints from the parallel threads can be undefined
and haphazard due to overlaps.

§ for loop iteraZng through the above vector of indices to display the
field values of the rows corresponding to the indices

Macro Signature: SELECT_ALL_COND_PAR(name, cond_lhs, cond_cmp,
cond_rhs)
Example Usage: SELECT_ALL_COND_PAR(Person, id, >=, 1)

Code Snippet:

#define SELECT_ALL_COND_PAR(name, cond_lhs, cond_cmp, cond_rhs) \

 for(auto ele_attr : attr_##name) \
 { \
 std::cout << ele_attr << "; "; \
 } \
 std::cout << "\n"; \

 { \
 std::vector<int> print_ind; \
 print_ind.reserve(name.size()); \
 std::mutex print_ind_mutex; \
 parlay::parallel_for(0, name.size(), [&](size_t ind){ \

 if((name[ind])->cond_lhs cond_cmp cond_rhs) \
 { \
 print_ind_mutex.lock(); \
 print_ind.push_back(ind); \
 print_ind_mutex.unlock(); \

 } \
 return 0; \
 }); \
 \
 for(int i = 0; i<print_ind.size(); ++i) \

 { \
 boost::pfr::for_each_field(*(name[print_ind[i]]), [](const auto& field) { \
 std::cout << field << "; "; \
 }); \

 std::cout << "\n"; \
 } \
 }

The below graph summarizes the performance comparison between SELECT_ALL_COND and
SELECT_ALL_COND_PAR for a query to retrieve the rows of the Person relaZon (of 10000
rows) with salary >= 250:

Here, the speedup is subopZmal (below 1) and the speedup decreases with the increase in
the number of threads. The main reason is that as this query requires displaying of the rows,
the implementaZon uses a lock-based data structure to serialize the prints. As these
overheads due to lock-contenZon are significant, there are no benefits due to parallelism for
this query.

o SELECT_COLS OperaZon: This is used to retrieve only the values for the
menZoned columns for all the rows from the menZoned table. This generates
the following code in-place using macro programming:

§ code to display the menZoned column names for the table
§ for loop iteraZng through the vector of rows of the table to display the

field values corresponding to the menZoned column names for each
of these rows

Macro Signature: SELECT_COLS(name, cols)
Example Usage: SELECT_COLS(Person,
 ((id))
 ((name))
)

Code Snippet:

#define SELECT_COLS(name, cols) \
 BOOST_PP_SEQ_FOR_EACH(DISPLAY_COL_NAMES, _, BOOST_PP_VARIADIC_TO_SEQ cols) \

 std::cout << "\n"; \
 for(auto row_trav : name) \
 { \
 BOOST_PP_SEQ_FOR_EACH(DISPLAY_VALS_COLS, row_trav, BOOST_PP_VARIADIC_TO_SEQ cols) \
 std::cout << "\n"; \

 }

o SELECT_COLS_COND OperaZon: This is used to retrieve the values for the

menZoned columns for all the rows saZsfying the given condiZon from the

menZoned table. This generates the following code in-place using macro
programming:

§ code to display the menZoned column names for the table
§ for loop iteraZng through the vector of rows of the table to display the

field values corresponding to the menZoned column names for each
of these rows saZsfying the menZoned condiZons.

Macro Signature: SELECT_COLS_COND(name, cols, cond_lhs, cond_cmp,
cond_rhs)
Example Usage: SELECT_COLS_COND(Person,
 ((id))
 ((name)),
 id, >=, 2
)

Code Snippet:

#define SELECT_COLS_COND(name, cols, cond_lhs, cond_cmp, cond_rhs) \
 BOOST_PP_SEQ_FOR_EACH(DISPLAY_COL_NAMES, _, BOOST_PP_VARIADIC_TO_SEQ cols) \
 std::cout << "\n"; \
 for(auto row_trav : name) \
 { \

 if(row_trav->cond_lhs cond_cmp cond_rhs) \
 { \
 BOOST_PP_SEQ_FOR_EACH(DISPLAY_VALS_COLS, row_trav, BOOST_PP_VARIADIC_TO_SEQ cols)
\
 std::cout << "\n"; \

 } \
 }

o SELECT_COLS_COND_PAR OperaZon: This is a parallel version of the above
SELECT_COLS_COND Query and is used to retrieve the values for the
menZoned columns for all the rows saZsfying the given condiZon from the
menZoned table. This generates the following code in-place using macro
programming:

§ code to display the menZoned column names for the table
§ parallel for loop iteraZng through the vector of rows of the table to

push the indices of the rows saZsfying the condiZons into a vector
a^er acquiring a mutex lock. The lock is used to serialize the prints
because if not, the prints from the parallel threads can be undefined
and haphazard due to overlaps.

§ for loop iteraZng through the above vector of indices to display the
field values corresponding to the menZoned column names for each
of the rows saZsfying the menZoned condiZons.

Macro Signature: SELECT_COLS_COND_PAR(name, cols, cond_lhs, cond_cmp,
cond_rhs)
Example Usage: SELECT_COLS_COND_PAR (Person,

 ((id))
 ((name)),
 id, >=, 2)

Code Snippet:

#define SELECT_COLS_COND_PAR(name, cols, cond_lhs, cond_cmp, cond_rhs) \
 BOOST_PP_SEQ_FOR_EACH(DISPLAY_COL_NAMES, _, BOOST_PP_VARIADIC_TO_SEQ cols) \

 std::cout << "\n"; \
 { \
 std::vector<int> print_ind; \
 print_ind.reserve(name.size()); \
 std::mutex print_ind_mutex; \

 parlay::parallel_for(0, name.size(), [&](size_t ind){ \
 if((name[ind])->cond_lhs cond_cmp cond_rhs) \
 { \
 print_ind_mutex.lock(); \
 print_ind.push_back(ind); \

 print_ind_mutex.unlock(); \
 } \
 return 0; \
 }); \
 \

 for(int i = 0; i<print_ind.size(); ++i) \
 { \
 if((name[print_ind[i]])->cond_lhs cond_cmp cond_rhs) \
 { \
 BOOST_PP_SEQ_FOR_EACH(DISPLAY_VALS_COLS, (name[print_ind[i]]),

BOOST_PP_VARIADIC_TO_SEQ cols) \
 std::cout << "\n"; \
 } \
 } \
 }

The below graph summarizes the performance comparison between SELECT_COLS_COND
and SELECT_ COLS _COND_PAR for a query to retrieve the id, fname, age fields of the rows
of the Person relaZon (of 10000 rows) with age >= 45:

Here, the speedup is subopZmal (below 1) and the speedup decreases with the increase in
the number of threads. The main reason is that as this query requires displaying of the rows,
the implementaZon uses a lock-based data structure to serialize the prints. As these
overheads due to lock-contenZon are significant, there are no benefits due to parallelism for
this query.

o SELECT_PK_EQ_SEQ OperaZon: This is used to search and retrieve the row

from the menZoned table saZsfying the equality condiZon on the primary key
fields. This generates the following code in-place using macro programming:

§ code to display the column names for the table
§ for loop iteraZng through the vector of rows of the table to retrieve

and display the field values of the row saZsfying the equality condiZon
on the primary key

Macro Signature: SELECT_PK_EQ_SEQ(name, field_pk, cond_cmp, eq_val)
Example Usage: SELECT_PK_EQ_SEQ(Person, id, ==, 7312)

Code Snippet:

#define SELECT_PK_EQ_SEQ(name, field_pk, cond_cmp, eq_val) \
 for(auto ele_attr : attr_##name) \
 { \
 std::cout << ele_attr << "; "; \
 } \

 std::cout << "\n"; \
 for(auto row_trav : name) \
 { \
 if(row_trav->field_pk == eq_val) \

 { \
 boost::pfr::for_each_field(*row_trav, [](const auto& field) { \
 std::cout << field << "; "; \

 }); \
 std::cout << "\n"; \
 break;\
 } \
 }

o SELECT_PK_EQ OperaZon: This is the B-Tree version of the above

SELECT_PK_EQ_SEQ query and is used to search and retrieve the row from
the menZoned table saZsfying the equality condiZon on the primary key
fields. This generates the following code in-place using macro programming:

§ code to call the search_eq funcZon on the Primary key B-Tree of the
table that searches and retrieves the row from the menZoned table
saZsfying the equality condiZon on the primary key

§ code to display the column names for the table
§ code to display the fields of the retrieved row

Macro Signature: SELECT_PK_EQ(name, cond_lhs, cond_cmp, cond_rhs)
Example Usage: SELECT_PK_EQ(Person, id, ==, 7312)

Code Snippet:

#define SELECT_PK_EQ(name, cond_lhs, cond_cmp, cond_rhs) \
{ \
 row_##name *search_eq_row = new row_##name; \
 search_eq_row->cond_lhs = cond_rhs; \
 auto ret_search = pk_btree_##name.search_eq(search_eq_row, cmp_##name); \

 if(ret_search.first != nullptr) \
 { \
 for(auto ele_attr : attr_##name) \
 { \
 std::cout << ele_attr << "; "; \

 } \
 std::cout << "\n"; \
 boost::pfr::for_each_field(*(ret_search.second), [](const auto& field) { \
 std::cout << field << "; "; \
 }); \

 std::cout << "\n"; \
 } \
 else \
 { \

 std::cout << "No matching Tuple found\n"; \
 } \
}

The below graph summarizes the performance comparison between SELECT_PK_EQ_SEQ
and SELECT_PK_EQ for a query to retrieve the rows of the Person relaZon (of 10000 rows)
with id == 7312:

It can be observed that the B-Tree implementaZon performs approximately 20x faster than
the corresponding sequenZal implementaZon.

o SELECT_ALL_RANGE OperaZon: This is used to retrieve the rows from the

menZoned table whose primary key field values are within the menZoned
range. This generates the following code in-place using macro programming:

§ for loop iteraZng through the vector of alribute strings to display the
column names for the table

§ for loop iteraZng through the vector of rows of the table to display the
field values for those rows whose primary key field values are within
the menZoned range

Macro Signature: SELECT_ALL_RANGE(name, field_pk, ge_val, le_val)
Example Usage: SELECT_ALL_RANGE(Person, id, 1291, 1524)

Code Snippet:

#define SELECT_ALL_RANGE(name, field_pk, ge_val, le_val) \
 for(auto ele_attr : attr_##name) \
 { \

 std::cout << ele_attr << "; "; \
 } \
 std::cout << "\n"; \
 for(auto row_trav : name) \
 { \

 if(row_trav->field_pk >= ge_val && row_trav->field_pk <= le_val) \
 { \
 boost::pfr::for_each_field(*row_trav, [](const auto& field) { \

 std::cout << field << "; "; \
 }); \
 std::cout << "\n"; \

 } \
 }

o SELECT_PK_RANGE OperaZon: This is the B-Tree version of the above
SELECT_ALL_RANGE Query and is used to retrieve the rows from the
menZoned table whose primary key field values are within the menZoned
range. This generates the following code in-place using macro programming:

§ for loop iteraZng through the vector of alribute strings to display the
column names for the table

§ code to call the range_traverse funcZon that traverses through the B-
Tree and displays the field values for those rows whose primary key
field values are within the menZoned range

Macro Signature: SELECT_PK_RANGE(name, field_pk, ge_val, le_val)
Example Usage: SELECT_PK_RANGE(Person, id, 1291, 1524)

Code Snippet:

#define SELECT_PK_RANGE(name, field_pk, ge_val, le_val) \

 row_##name *range_ge_row = new row_##name; \

 range_ge_row->field_pk = ge_val; \

 row_##name *range_le_row = new row_##name; \

 range_le_row->field_pk = le_val; \

 for(auto ele_attr : attr_##name) \

 { \

 std::cout << ele_attr << "; "; \

 } \

 std::cout << "\n"; \

 pk_btree_##name.range_traverse(range_ge_row, range_le_row, cmp_##name); \

The below graph summarizes the performance comparison between SELECT_ALL_RANGE
and SELECT_PK_RANGE for a query to retrieve the rows of the Person relaZon (of 10000
rows) with id >= 1291 and id <= 1524:

It can be observed that the Select Range Query using the B-Tree implementaZon performs
approximately 2x faster than the corresponding sequenZal implementaZon.

o UPDATE_ALL OperaZon: This is used to update the values of the menZoned
columns of all the rows to the values passed as part of the argument. This
generates the following code in-place using macro programming:

§ for loop iteraZng through the vector of rows of the table to update the
values of the menZoned columns to the values passed as part of the
argument

Macro Signature: UPDATE_ALL(name, upd_values)
Example Usage: UPDATE_ALL(Person,
 ((id, -1))
 ((mob_no, "+91"))
)

o UPDATE_COND OperaZon: This is used to update the values of the
menZoned columns of the rows saZsfying the given condiZon, to the values
passed as part of the argument. This generates the following code in-place
using macro programming:

§ for loop iteraZng through the vector of rows of the table to update the
values of the menZoned columns of the rows saZsfying the given
condiZon, to the values passed as part of the argument

Macro Signature: UPDATE_COND(name, upd_values, cond_lhs, cond_cmp,
cond_rhs)
Example Usage: UPDATE_COND(Person,
 ((id, 15))
 ((mob_no, "+91")),

 id, ==, 14
)

o DELETE_ALL_ROWS OperaZon: This is used to delete all the rows of the
menZoned table. This generates the following code in-place using macro
programming:

§ for loop iteraZng through the vector of rows to delete the memory
allocated for these rows

§ calling the clear operaZon on the vector of rows
Macro Signature: DELETE_ALL_ROWS(name)
Example Usage: DELETE_ALL_ROWS(Person)

o DELETE_COND OperaZon: This is used to delete the rows of the menZoned
table that saZsfy the given condiZon. This generates the following code in-
place using macro programming:

§ while loop iteraZng through the vector of rows to delete the memory
allocated for the row and to erase it from the vector if they saZsfy the
given condiZon

§ above while loop ensures to safely handle the deleZon of elements of
a vector while iteraZng through it by updaZng the iterators
appropriately

Macro Signature: DELETE_COND(name, cond_lhs, cond_cmp, cond_rhs)
Example Usage: DELETE_COND(Person, id, >=, 2)

o ORDER_BY_ASC OperaZon: This is used to order the table in ascending order
of the menZoned columns and display the rows a^er ordering. This generates
the following code in-place using macro programming:

§ code to create a copy of the vector of rows of the table
§ code to call the sequenZal sort funcZon on the above copy vector

with a comparator generated for comparing the menZoned columns
§ for loop iteraZng through the vector of alribute strings to display the

column names for the table
§ for loop iteraZng through the sorted vector of rows of the table to

display the field values for those rows
Macro Signature: ORDER_BY_ASC(name, cols)
Example Usage: ORDER_BY_ASC(Person,
 ((fname))
 ((lname))
 ((id))
)

Code Snippet:

#define ORDER_BY_ASC(name, cols) \
{ \
 std::vector<row_##name*> sort_vec(name.begin(), name.end()); \
 std::sort(sort_vec.begin(), sort_vec.end(), [](row_##name* left, row_##name* right){ \

 BOOST_PP_SEQ_FOR_EACH(EXPAND_FIELD_COMPARISON_ASC, _, BOOST_PP_VARIADIC_TO_SEQ cols)
\
 return false; \

 }); \
 for(auto ele_attr : attr_##name) \
 { \
 std::cout << ele_attr << "; "; \
 } \

 std::cout << "\n"; \
 for(auto row_trav : sort_vec) \
 { \
 boost::pfr::for_each_field(*row_trav, [](const auto& field) { \
 std::cout << field << "; "; \

 }); \
 std::cout << "\n"; \
 } \
 std::cout << "\n"; \
}

o ORDER_BY_ASC_PAR OperaZon: This is a parallel version of the above

ORDER_BY_ASC Query and is used to order the table in ascending order of
the menZoned columns and display the rows a^er ordering. This generates
the following code in-place using macro programming:

§ code to create a copy of the vector of rows of the table
§ code to call the parallel merge sort funcZon on the above copy vector

with a comparator generated for comparing the menZoned columns
§ for loop iteraZng through the vector of alribute strings to display the

column names for the table
§ for loop iteraZng through the sorted vector of rows of the table to

display the field values for those rows
Macro Signature: ORDER_BY_ASC_PAR(name, cols)
Example Usage: ORDER_BY_ASC_PAR(Person,
 ((fname))
 ((lname))
 ((id))
)

Code Snippet:

#define ORDER_BY_ASC_PAR(name, cols) \
{ \
 parlay::sequence<row_##name*> sort_seq(name.begin(), name.end()); \
 merge_sort(sort_seq, [](row_##name* left, row_##name* right){ \

 BOOST_PP_SEQ_FOR_EACH(EXPAND_FIELD_COMPARISON_ASC, _, BOOST_PP_VARIADIC_TO_SEQ cols)
\
 return false; \
 }); \
 for(auto ele_attr : attr_##name) \

 { \

 std::cout << ele_attr << "; "; \
 } \
 std::cout << "\n"; \

 for(auto row_trav : sort_seq) \
 { \
 boost::pfr::for_each_field(*row_trav, [](const auto& field) { \
 std::cout << field << "; "; \
 }); \

 std::cout << "\n"; \
 } \
 std::cout << "\n"; \
}

The below graph summarizes the performance comparison between ORDER_BY_ASC and
ORDER_BY_ASC_PAR for a query to order the rows of the Person relaZon (of 10000 rows)
based on (fname, lname, id) fields:

It can be observed that the Parallel version achieved a maximum speedup of 2.2 for 16
threads, thereby denoZng that there were some benefits due to parallelism.

o ORDER_BY_DESC OperaZon: This is used to order the table in descending
order of the menZoned columns and display the rows a^er ordering. This
generates the following code in-place using macro programming:

§ code to create a copy of the vector of rows of the table
§ code to call the sequenZal sort funcZon on the above copy vector

with a comparator generated for comparing the menZoned columns
§ for loop iteraZng through the vector of alribute strings to display the

column names for the table
§ for loop iteraZng through the sorted vector of rows of the table to

display the field values for those rows
Macro Signature: ORDER_BY_DESC(name, cols)

Example Usage: ORDER_BY_DESC(Person,
 ((fname))
 ((lname))
 ((id))
)

Code Snippet:

#define ORDER_BY_DESC(name, cols) \
{ \

 std::vector<row_##name*> sort_vec(name.begin(), name.end()); \
 std::sort(sort_vec.begin(), sort_vec.end(), [](row_##name* left, row_##name* right){ \
 BOOST_PP_SEQ_FOR_EACH(EXPAND_FIELD_COMPARISON_DESC, _, BOOST_PP_VARIADIC_TO_SEQ cols)
\

 return false; \
 }); \
 for(auto ele_attr : attr_##name) \
 { \
 std::cout << ele_attr << "; "; \

 } \
 std::cout << "\n"; \
 for(auto row_trav : sort_vec) \
 { \
 boost::pfr::for_each_field(*row_trav, [](const auto& field) { \

 std::cout << field << "; "; \
 }); \
 std::cout << "\n"; \
 } \
 std::cout << "\n"; \

}

o ORDER_BY_DESC_PAR OperaZon: This is a parallel version of the above
ORDER_BY_ DESC Query and is used to order the table in descending order of
the menZoned columns and display the rows a^er ordering. This generates
the following code in-place using macro programming:

§ code to create a copy of the vector of rows of the table
§ code to call the parallel merge sort funcZon on the above copy vector

with a comparator generated for comparing the menZoned columns
§ for loop iteraZng through the vector of alribute strings to display the

column names for the table
§ for loop iteraZng through the sorted vector of rows of the table to

display the field values for those rows
Macro Signature: ORDER_BY_ DESC _PAR(name, cols)
Example Usage: ORDER_BY_ DESC _PAR(Person,
 ((fname))
 ((lname))
 ((id)))

Code Snippet:

#define ORDER_BY_DESC_PAR(name, cols) \
{ \
 parlay::sequence<row_##name*> sort_seq(name.begin(), name.end()); \

 merge_sort(sort_seq, [](row_##name* left, row_##name* right){ \
 BOOST_PP_SEQ_FOR_EACH(EXPAND_FIELD_COMPARISON_DESC, _, BOOST_PP_VARIADIC_TO_SEQ cols)
\
 return false; \
 }); \

 for(auto ele_attr : attr_##name) \
 { \
 std::cout << ele_attr << "; "; \
 } \

 std::cout << "\n"; \
 for(auto row_trav : sort_seq) \
 { \
 boost::pfr::for_each_field(*row_trav, [](const auto& field) { \
 std::cout << field << "; "; \

 }); \
 std::cout << "\n"; \
 } \
 std::cout << "\n"; \
}

The below graph summarizes the performance comparison between ORDER_BY_ DESC and
ORDER_BY_ DESC _PAR for a query to order the rows of the Person relaZon (of 10000 rows)
based on (salary, id) fields:

It can be observed that the Parallel version achieved a maximum speedup of 1.36 for 8
threads, thereby denoZng that there were some benefits due to parallelism.

o GROUP_BY_COUNT OperaZon: This is used to group the table based on the
menZoned columns and aggregate the counts of these groups. This generates
the following code in-place using macro programming:

§ code to create a copy of the vector of rows of the table
§ code to call the sequenZal sort funcZon on the above copy vector

with a comparator generated for comparing the menZoned columns
§ for loop iteraZng through the vector of alribute strings to display the

column names for the table
§ for loop iteraZng through the sorted vector of rows of the table to

idenZfy groups and aggregate their counts
Macro Signature: GROUP_BY_COUNT(name, cols)
Example Usage: GROUP_BY_COUNT(Person,
 ((lname))
)

Code Snippet:

#define GROUP_BY_COUNT(name, cols) \
{ \
 std::vector<row_##name*> sort_vec(name.begin(), name.end()); \
 std::sort(sort_vec.begin(), sort_vec.end(), [](row_##name* left, row_##name* right){ \
 BOOST_PP_SEQ_FOR_EACH(EXPAND_FIELD_COMPARISON_ASC, _, BOOST_PP_VARIADIC_TO_SEQ cols)

\
 return false; \
 }); \
 if(sort_vec.size() != 0) \
 { \

 std::cout << "Count; "; \
 BOOST_PP_SEQ_FOR_EACH(DISPLAY_COL_NAMES, _, BOOST_PP_VARIADIC_TO_SEQ cols) \
 std::cout << "\n"; \
 row_##name* first_r = sort_vec[0]; \
 long long int curr_count = 1; \

 for(int i = 1; i<sort_vec.size(); ++i) \
 { \
 if(1 BOOST_PP_SEQ_FOR_EACH(GENERATE_EQUALITY_CMP_GROUP_BY, sort_vec[i],
BOOST_PP_VARIADIC_TO_SEQ cols)) \
 { \

 ++curr_count; \
 } \
 else \
 { \
 std::cout << curr_count << "; "; \

 BOOST_PP_SEQ_FOR_EACH(DISPLAY_VALS_COLS, first_r, BOOST_PP_VARIADIC_TO_SEQ
cols) \
 std::cout << "\n"; \
 curr_count = 1; \
 first_r = sort_vec[i]; \

 } \
 } \

 std::cout << curr_count << "; "; \
 BOOST_PP_SEQ_FOR_EACH(DISPLAY_VALS_COLS, first_r, BOOST_PP_VARIADIC_TO_SEQ cols) \
 std::cout << "\n\n"; \

 } \
}

o GROUP_BY_COUNT_PAR OperaZon: This is parallel version 1 of the above

GROUP_BY_COUNT Query and is used to group the table based on the
menZoned columns and aggregate the counts of these groups. This generates
the following code in-place using macro programming:

§ code to create a copy of the vector of rows of the table
§ code to call the parallel merge sort funcZon on the above copy vector

with a comparator generated for comparing the menZoned columns
§ for loop iteraZng through the vector of alribute strings to display the

column names for the table
§ for loop iteraZng through the sorted vector of rows of the table to

idenZfy groups and aggregate their counts
Macro Signature: GROUP_BY_COUNT_PAR(name, cols)
Example Usage: GROUP_BY_COUNT_PAR(Person,
 ((lname))
)

Code Snippet:

#define GROUP_BY_COUNT_PAR(name, cols) \
{ \

 parlay::sequence<row_##name*> sort_seq(name.begin(), name.end()); \
 merge_sort(sort_seq, [](row_##name* left, row_##name* right){ \
 BOOST_PP_SEQ_FOR_EACH(EXPAND_FIELD_COMPARISON_ASC, _, BOOST_PP_VARIADIC_TO_SEQ cols)
\
 return false; \

 }); \
 if(sort_seq.size() != 0) \
 { \
 std::cout << "Count; "; \
 BOOST_PP_SEQ_FOR_EACH(DISPLAY_COL_NAMES, _, BOOST_PP_VARIADIC_TO_SEQ cols) \

 std::cout << "\n"; \
 row_##name* first_r = sort_seq[0]; \
 long long int curr_count = 1; \
 for(int i = 1; i<sort_seq.size(); ++i) \
 { \

 if(1 BOOST_PP_SEQ_FOR_EACH(GENERATE_EQUALITY_CMP_GROUP_BY, sort_seq[i],
BOOST_PP_VARIADIC_TO_SEQ cols)) \
 { \
 ++curr_count; \
 } \

 else \
 { \
 std::cout << curr_count << "; "; \

 BOOST_PP_SEQ_FOR_EACH(DISPLAY_VALS_COLS, first_r, BOOST_PP_VARIADIC_TO_SEQ
cols) \
 std::cout << "\n"; \

 curr_count = 1; \
 first_r = sort_seq[i]; \
 } \
 } \
 std::cout << curr_count << "; "; \

 BOOST_PP_SEQ_FOR_EACH(DISPLAY_VALS_COLS, first_r, BOOST_PP_VARIADIC_TO_SEQ cols) \
 std::cout << "\n\n"; \
 } \
}

o GROUP_BY_COUNT_PAR2 OperaZon: This is parallel version 2 of the above

GROUP_BY_COUNT Query and is used to group the table based on the
menZoned columns and aggregate the counts of these groups. This generates
the following code in-place using macro programming:

§ code to create a copy of the vector of rows of the table
§ code to call the parallel merge sort funcZon on the above copy vector

with a comparator generated for comparing the menZoned columns
§ code to retrieve the indices of the rows of the table that have unique

values for the menZoned fields using parallel tabulate and parallel
filter

§ code to retrieve the counts of the groups corresponding to the above
unique rows using parallel tabulate

§ for loop iteraZng through the vector of alribute strings to display the
column names for the table

§ for loop to display groups and their aggregated counts
Macro Signature: GROUP_BY_COUNT_PAR2(name, cols)
Example Usage: GROUP_BY_COUNT_PAR2(Person,
 ((lname))
)

Code Snippet:

#define GROUP_BY_COUNT_PAR2(name, cols) \
{ \
 parlay::sequence<row_##name*> sort_seq(name.begin(), name.end()); \
 merge_sort(sort_seq, [](row_##name* left, row_##name* right){ \

 BOOST_PP_SEQ_FOR_EACH(EXPAND_FIELD_COMPARISON_ASC, _, BOOST_PP_VARIADIC_TO_SEQ cols)
\
 return false; \
 }); \
 auto ind_seq = parlay::tabulate(sort_seq.size(), [](int i) -> int { return i; }); \

 auto boundaries_seq = parlay::filter(ind_seq, [&](auto ele) { return (ele == 0
BOOST_PP_SEQ_FOR_EACH(GENERATE_EQUALITY_CMP_GROUP_BY_PAR2, (sort_seq[ele], sort_seq[ele-1]),
BOOST_PP_VARIADIC_TO_SEQ cols)); }); \
 auto group_count_seq = parlay::tabulate(boundaries_seq.size(), [&](int i) -> int { \
 int st_ind = boundaries_seq[i]; \

 int en_ind = -1; \
 if(i + 1 == boundaries_seq.size()) \
 { \

 en_ind = sort_seq.size(); \
 } \
 else \
 { \
 en_ind = boundaries_seq[i+1]; \

 } \
 auto count_v = en_ind - st_ind; \
 return count_v; \
 }); \
 if(sort_seq.size() != 0) \

 { \
 std::cout << "Count; "; \
 BOOST_PP_SEQ_FOR_EACH(DISPLAY_COL_NAMES, _, BOOST_PP_VARIADIC_TO_SEQ cols) \
 std::cout << "\n"; \
 for(int i = 0; i<boundaries_seq.size(); ++i) \

 { \
 std::cout << group_count_seq[i] << "; "; \
 BOOST_PP_SEQ_FOR_EACH(DISPLAY_VALS_COLS, sort_seq[boundaries_seq[i]],
BOOST_PP_VARIADIC_TO_SEQ cols) \
 std::cout << "\n"; \

 } \
 std::cout << "\n\n"; \
 } \
}

The below graph summarizes the performance comparison between GROUP_BY_COUNT,
GROUP_BY_COUNT_PAR, and GROUP_BY_COUNT_PAR2 for a query to group the rows of the
Person relaZon (of 10000 rows) based on (lname) and retrieve their counts:

It can be observed that the Parallel Version 1 performs slightly beler than the Parallel
Version 2. This could be because the overheads introduced by version 2’s algorithm which
requires the creaZon of addiZonal data structures using tabulate and filter is quite
considerable that it is outweighing any benefits.

o GROUP_BY_MIN OperaZon: This is used to group the table based on the
menZoned columns and aggregate the minimum of the menZoned column
for these groups. This generates the following code in-place using macro
programming:

§ code to create a copy of the vector of rows of the table
§ code to call the sequenZal sort funcZon on the above copy vector

with a comparator generated for comparing the menZoned columns
§ for loop iteraZng through the vector of alribute strings to display the

column names for the table
§ for loop iteraZng through the sorted vector of rows of the table to

idenZfy groups and aggregate the minimum of the menZoned column
Macro Signature: GROUP_BY_MIN(name, cols, min_col)
Example Usage: GROUP_BY_MIN(Person,
 ((country)), salary
)

Code Snippet:

#define GROUP_BY_MIN(name, cols, min_col) \
{ \

 std::vector<row_##name*> sort_vec(name.begin(), name.end()); \
 std::sort(sort_vec.begin(), sort_vec.end(), [](row_##name* left, row_##name* right){ \
 BOOST_PP_SEQ_FOR_EACH(EXPAND_FIELD_COMPARISON_ASC, _, BOOST_PP_VARIADIC_TO_SEQ cols)
\
 return false; \

 }); \
 if(sort_vec.size() != 0) \
 { \
 std::cout << "Min_" << TO_STRING_EXPAND(min_col) << "; "; \

 BOOST_PP_SEQ_FOR_EACH(DISPLAY_COL_NAMES, _, BOOST_PP_VARIADIC_TO_SEQ cols) \
 std::cout << "\n"; \
 row_##name* first_r = sort_vec[0]; \
 auto min_val = sort_vec[0]->min_col; \
 for(int i = 1; i<sort_vec.size(); ++i) \

 { \
 if(1 BOOST_PP_SEQ_FOR_EACH(GENERATE_EQUALITY_CMP_GROUP_BY, sort_vec[i],
BOOST_PP_VARIADIC_TO_SEQ cols)) \
 { \
 if(sort_vec[i]->min_col < min_val) \

 { \
 min_val = sort_vec[i]->min_col; \
 } \
 } \
 else \

 { \
 std::cout << min_val << "; "; \
 BOOST_PP_SEQ_FOR_EACH(DISPLAY_VALS_COLS, first_r, BOOST_PP_VARIADIC_TO_SEQ

cols) \
 std::cout << "\n"; \
 min_val = sort_vec[i]->min_col; \
 first_r = sort_vec[i]; \
 } \

 } \
 std::cout << min_val << "; "; \
 BOOST_PP_SEQ_FOR_EACH(DISPLAY_VALS_COLS, first_r, BOOST_PP_VARIADIC_TO_SEQ cols) \
 std::cout << "\n\n"; \
 } \

}

o GROUP_BY_MIN_PAR OperaZon: This is parallel version 1 of the above

GROUP_BY_MIN Query and is used to group the table based on the
menZoned columns and aggregate the minimum of the menZoned column
for these groups. This generates the following code in-place using macro
programming:

§ code to create a copy of the vector of rows of the table
§ code to call the parallel merge sort funcZon on the above copy vector

with a comparator generated for comparing the menZoned columns
§ for loop iteraZng through the vector of alribute strings to display the

column names for the table
§ for loop iteraZng through the sorted vector of rows of the table to

idenZfy groups and aggregate the minimum of the menZoned column

Macro Signature: GROUP_BY_MIN_PAR(name, cols, min_col)
Example Usage: GROUP_BY_MIN_PAR(Person,
 ((country)), salary
)

Code Snippet:

#define GROUP_BY_MIN_PAR(name, cols, min_col) \
{ \
 parlay::sequence<row_##name*> sort_seq(name.begin(), name.end()); \

 merge_sort(sort_seq, [](row_##name* left, row_##name* right){ \
 BOOST_PP_SEQ_FOR_EACH(EXPAND_FIELD_COMPARISON_ASC, _, BOOST_PP_VARIADIC_TO_SEQ cols)
\
 return false; \
 }); \

 if(sort_seq.size() != 0) \
 { \
 std::cout << "Min_" << TO_STRING_EXPAND(min_col) << "; "; \
 BOOST_PP_SEQ_FOR_EACH(DISPLAY_COL_NAMES, _, BOOST_PP_VARIADIC_TO_SEQ cols) \
 std::cout << "\n"; \

 row_##name* first_r = sort_seq[0]; \

 auto min_val = sort_seq[0]->min_col; \
 for(int i = 1; i<sort_seq.size(); ++i) \
 { \

 if(1 BOOST_PP_SEQ_FOR_EACH(GENERATE_EQUALITY_CMP_GROUP_BY, sort_seq[i],
BOOST_PP_VARIADIC_TO_SEQ cols)) \
 { \
 if(sort_seq[i]->min_col < min_val) \
 { \

 min_val = sort_seq[i]->min_col; \
 } \
 } \
 else \
 { \

 std::cout << min_val << "; "; \
 BOOST_PP_SEQ_FOR_EACH(DISPLAY_VALS_COLS, first_r, BOOST_PP_VARIADIC_TO_SEQ
cols) \
 std::cout << "\n"; \
 min_val = sort_seq[i]->min_col; \

 first_r = sort_seq[i]; \
 } \
 } \
 std::cout << min_val << "; "; \
 BOOST_PP_SEQ_FOR_EACH(DISPLAY_VALS_COLS, first_r, BOOST_PP_VARIADIC_TO_SEQ cols) \

 std::cout << "\n\n"; \
 } \
}

o GROUP_BY_MIN_PAR2 OperaZon: This is parallel version 2 of the above

GROUP_BY_MIN Query and is used to group the table based on the
menZoned columns and aggregate the minimum of the menZoned column
for these groups. This generates the following code in-place using macro
programming:

§ code to create a copy of the vector of rows of the table
§ code to call the parallel merge sort funcZon on the above copy vector

with a comparator generated for comparing the menZoned columns
§ code to retrieve the indices of the rows of the table that have unique

values for the menZoned fields using parallel tabulate and parallel
filter

§ code to retrieve the minimum of the menZoned column for the
groups corresponding to the above unique rows using parallel
tabulate and parallel reduce

§ for loop iteraZng through the vector of alribute strings to display the
column names for the table

§ for loop to display groups and their aggregated minimum
Macro Signature: GROUP_BY_MIN_PAR2(name, cols, min_col)
Example Usage: GROUP_BY_MIN_PAR2(Person,
((country)), salary)

Code Snippet:

#define GROUP_BY_MIN_PAR2(name, cols, min_col) \
{ \
 parlay::sequence<row_##name*> sort_seq(name.begin(), name.end()); \

 merge_sort(sort_seq, [](row_##name* left, row_##name* right){ \
 BOOST_PP_SEQ_FOR_EACH(EXPAND_FIELD_COMPARISON_ASC, _, BOOST_PP_VARIADIC_TO_SEQ cols)
\
 return false; \
 }); \

 auto ind_seq = parlay::tabulate(sort_seq.size(), [](int i) -> int { return i; }); \
 auto min_col_seq = parlay::tabulate(sort_seq.size(), [&](int i) { return sort_seq[i]-
>min_col; }); \
 auto boundaries_seq = parlay::filter(ind_seq, [&](auto ele) { return (ele == 0

BOOST_PP_SEQ_FOR_EACH(GENERATE_EQUALITY_CMP_GROUP_BY_PAR2, (sort_seq[ele], sort_seq[ele-1]),
BOOST_PP_VARIADIC_TO_SEQ cols)); }); \
 auto group_min_seq = parlay::tabulate(boundaries_seq.size(), [&](int i) -> int { \
 int st_ind = boundaries_seq[i]; \
 int en_ind = -1; \

 if(i + 1 == boundaries_seq.size()) \
 { \
 en_ind = sort_seq.size(); \
 } \
 else \

 { \
 en_ind = boundaries_seq[i+1]; \
 } \
 auto m = parlay::make_monoid([](long long int left, long long int right) { \
 if(left <= right) \

 { \
 return left; \
 } \
 return right; \
 } ,LLONG_MAX); \

 auto min_v = parlay::reduce(min_col_seq.cut(st_ind, en_ind), m); \
 return min_v; \
 }); \
 if(sort_seq.size() != 0) \
 { \

 std::cout << "Min_" << TO_STRING_EXPAND(min_col) << "; "; \
 BOOST_PP_SEQ_FOR_EACH(DISPLAY_COL_NAMES, _, BOOST_PP_VARIADIC_TO_SEQ cols) \
 std::cout << "\n"; \
 for(int i = 0; i<boundaries_seq.size(); ++i) \
 { \

 std::cout << group_min_seq[i] << "; "; \
 BOOST_PP_SEQ_FOR_EACH(DISPLAY_VALS_COLS, sort_seq[boundaries_seq[i]],
BOOST_PP_VARIADIC_TO_SEQ cols) \
 std::cout << "\n"; \
 } \

 std::cout << "\n\n"; \

 } \
}

The below graph summarizes the performance comparison between GROUP_BY_MIN,
GROUP_BY_MIN_PAR2, and GROUP_BY_MIN_PAR2 for a query to group the rows of the
Person relaZon (of 10000 rows) based on (country) and retrieve the minimum salary for
these groups:

It can observed that the Parallel Version 2 performs beler than the Parallel Version 1 with
the increase in number of threads. This could be because the parallel version 2 algorithm
using primiZves like tabulate, filter and reduce inherently contains more scope for
parallelism as compared to parallel version 1 which is essenZally sequenZal a^er the iniZal
parallel sort.

o GROUP_BY_MAX OperaZon: This is used to group the table based on the
menZoned columns and aggregate the maximum of the menZoned column
for these groups. This generates the following code in-place using macro
programming:

§ code to create a copy of the vector of rows of the table
§ code to call the sequenZal sort funcZon on the above copy vector

with a comparator generated for comparing the menZoned columns
§ for loop iteraZng through the vector of alribute strings to display the

column names for the table
§ for loop iteraZng through the sorted vector of rows of the table to

idenZfy groups and aggregate the maximum of the menZoned column
Macro Signature: GROUP_BY_MAX(name, cols, max_col)
Example Usage: GROUP_BY_MAX(Person,
 ((country)), age
)

Code Snippet:

#define GROUP_BY_MAX(name, cols, max_col) \
{ \

 std::vector<row_##name*> sort_vec(name.begin(), name.end()); \
 std::sort(sort_vec.begin(), sort_vec.end(), [](row_##name* left, row_##name* right){ \
 BOOST_PP_SEQ_FOR_EACH(EXPAND_FIELD_COMPARISON_ASC, _, BOOST_PP_VARIADIC_TO_SEQ cols)
\
 return false; \

 }); \
 if(sort_vec.size() != 0) \
 { \
 std::cout << "Max_" << TO_STRING_EXPAND(max_col) << "; "; \
 BOOST_PP_SEQ_FOR_EACH(DISPLAY_COL_NAMES, _, BOOST_PP_VARIADIC_TO_SEQ cols) \

 std::cout << "\n"; \
 row_##name* first_r = sort_vec[0]; \
 auto max_val = sort_vec[0]->max_col; \
 for(int i = 1; i<sort_vec.size(); ++i) \
 { \

 if(1 BOOST_PP_SEQ_FOR_EACH(GENERATE_EQUALITY_CMP_GROUP_BY, sort_vec[i],
BOOST_PP_VARIADIC_TO_SEQ cols)) \
 { \
 if(sort_vec[i]->max_col > max_val) \
 { \

 max_val = sort_vec[i]->max_col; \
 } \
 } \
 else \
 { \

 std::cout << max_val << "; "; \
 BOOST_PP_SEQ_FOR_EACH(DISPLAY_VALS_COLS, first_r, BOOST_PP_VARIADIC_TO_SEQ
cols) \
 std::cout << "\n"; \
 max_val = sort_vec[i]->max_col; \

 first_r = sort_vec[i]; \
 } \
 } \
 std::cout << max_val << "; "; \
 BOOST_PP_SEQ_FOR_EACH(DISPLAY_VALS_COLS, first_r, BOOST_PP_VARIADIC_TO_SEQ cols) \

 std::cout << "\n\n"; \
 } \
}

o GROUP_BY_MAX_PAR OperaZon: This is parallel version 1 of the above

GROUP_BY_MAX Query and is used to group the table based on the
menZoned columns and aggregate the maximum of the menZoned column
for these groups. This generates the following code in-place using macro
programming:

§ code to create a copy of the vector of rows of the table
§ code to call the parallel merge sort funcZon on the above copy vector

with a comparator generated for comparing the menZoned columns
§ for loop iteraZng through the vector of alribute strings to display the

column names for the table
§ for loop iteraZng through the sorted vector of rows of the table to

idenZfy groups and aggregate the maximum of the menZoned column

Macro Signature: GROUP_BY_MAX_PAR(name, cols, max_col)
Example Usage: GROUP_BY_MAX_PAR(Person,
 ((country)), age
)

Code Snippet:

#define GROUP_BY_MAX_PAR(name, cols, max_col) \
{ \
 parlay::sequence<row_##name*> sort_seq(name.begin(), name.end()); \
 merge_sort(sort_seq, [](row_##name* left, row_##name* right){ \
 BOOST_PP_SEQ_FOR_EACH(EXPAND_FIELD_COMPARISON_ASC, _, BOOST_PP_VARIADIC_TO_SEQ cols)

\
 return false; \
 }); \
 if(sort_seq.size() != 0) \
 { \

 std::cout << "Max_" << TO_STRING_EXPAND(max_col) << "; "; \
 BOOST_PP_SEQ_FOR_EACH(DISPLAY_COL_NAMES, _, BOOST_PP_VARIADIC_TO_SEQ cols) \
 std::cout << "\n"; \
 row_##name* first_r = sort_seq[0]; \
 auto max_val = sort_seq[0]->max_col; \

 for(int i = 1; i<sort_seq.size(); ++i) \
 { \
 if(1 BOOST_PP_SEQ_FOR_EACH(GENERATE_EQUALITY_CMP_GROUP_BY, sort_seq[i],
BOOST_PP_VARIADIC_TO_SEQ cols)) \
 { \

 if(sort_seq[i]->max_col > max_val) \
 { \
 max_val = sort_seq[i]->max_col; \
 } \
 } \

 else \
 { \
 std::cout << max_val << "; "; \
 BOOST_PP_SEQ_FOR_EACH(DISPLAY_VALS_COLS, first_r, BOOST_PP_VARIADIC_TO_SEQ
cols) \

 std::cout << "\n"; \
 max_val = sort_seq[i]->max_col; \
 first_r = sort_seq[i]; \
 } \

 } \
 std::cout << max_val << "; "; \
 BOOST_PP_SEQ_FOR_EACH(DISPLAY_VALS_COLS, first_r, BOOST_PP_VARIADIC_TO_SEQ cols) \

 std::cout << "\n\n"; \
 } \
}

o GROUP_BY_MAX_PAR2 OperaZon: This is parallel version 2 of the above

GROUP_BY_MAX Query and is used to group the table based on the
menZoned columns and aggregate the maximum of the menZoned column
for these groups. This generates the following code in-place using macro
programming:

§ code to create a copy of the vector of rows of the table
§ code to call the parallel merge sort funcZon on the above copy vector

with a comparator generated for comparing the menZoned columns
§ code to retrieve the indices of the rows of the table that have unique

values for the menZoned fields using parallel tabulate and parallel
filter

§ code to retrieve the maximum of the menZoned column for the
groups corresponding to the above unique rows using parallel
tabulate and parallel reduce

§ for loop iteraZng through the vector of alribute strings to display the
column names for the table

§ for loop to display groups and their aggregated maximum
Macro Signature: GROUP_BY_MAX_PAR2(name, cols, max_col)
Example Usage: GROUP_BY_MAX_PAR2(Person,
 ((country)), age
)

Code Snippet:

#define GROUP_BY_MAX_PAR2(name, cols, max_col) \
{ \

 parlay::sequence<row_##name*> sort_seq(name.begin(), name.end()); \
 merge_sort(sort_seq, [](row_##name* left, row_##name* right){ \
 BOOST_PP_SEQ_FOR_EACH(EXPAND_FIELD_COMPARISON_ASC, _, BOOST_PP_VARIADIC_TO_SEQ cols)
\
 return false; \

 }); \
 auto ind_seq = parlay::tabulate(sort_seq.size(), [](int i) -> int { return i; }); \
 auto max_col_seq = parlay::tabulate(sort_seq.size(), [&](int i) { return sort_seq[i]-
>max_col; }); \
 auto boundaries_seq = parlay::filter(ind_seq, [&](auto ele) { return (ele == 0

BOOST_PP_SEQ_FOR_EACH(GENERATE_EQUALITY_CMP_GROUP_BY_PAR2, (sort_seq[ele], sort_seq[ele-1]),
BOOST_PP_VARIADIC_TO_SEQ cols)); }); \
 auto group_max_seq = parlay::tabulate(boundaries_seq.size(), [&](int i) -> int { \
 int st_ind = boundaries_seq[i]; \
 int en_ind = -1; \

 if(i + 1 == boundaries_seq.size()) \

 { \
 en_ind = sort_seq.size(); \
 } \

 else \
 { \
 en_ind = boundaries_seq[i+1]; \
 } \
 auto m = parlay::make_monoid([](long long int left, long long int right) { \

 if(left >= right) \
 { \
 return left; \
 } \
 return right; \

 } ,LLONG_MIN); \
 auto max_v = parlay::reduce(max_col_seq.cut(st_ind, en_ind), m); \
 return max_v; \
 }); \
 if(sort_seq.size() != 0) \

 { \
 std::cout << "Max_" << TO_STRING_EXPAND(max_col) << "; "; \
 BOOST_PP_SEQ_FOR_EACH(DISPLAY_COL_NAMES, _, BOOST_PP_VARIADIC_TO_SEQ cols) \
 std::cout << "\n"; \
 for(int i = 0; i<boundaries_seq.size(); ++i) \

 { \
 std::cout << group_max_seq[i] << "; "; \
 BOOST_PP_SEQ_FOR_EACH(DISPLAY_VALS_COLS, sort_seq[boundaries_seq[i]],
BOOST_PP_VARIADIC_TO_SEQ cols) \
 std::cout << "\n"; \

 } \
 std::cout << "\n\n"; \
 } \
}

The below graph summarizes the performance comparison between GROUP_BY_MAX,
GROUP_BY_MAX_PAR, and GROUP_BY_MAX_PAR2 for a query to group the rows of the
Person relaZon (of 10000 rows) based on (country) and retrieve the maximum age for these
groups:

It can be observed that the Parallel Version 2 performs beler than the Parallel Version 1
with the increase in number of threads. This could be because the parallel version 2
algorithm using primiZves like tabulate, filter and reduce inherently contains more scope for
parallelism as compared to parallel version 1 which is essenZally sequenZal a^er the iniZal
parallel sort.

o GROUP_BY_SUM OperaZon: This is used to group the table based on the
menZoned columns and aggregate the sum of the menZoned column for
these groups. This generates the following code in-place using macro
programming:

§ code to create a copy of the vector of rows of the table
§ code to call the sequenZal sort funcZon on the above copy vector

with a comparator generated for comparing the menZoned columns
§ for loop iteraZng through the vector of alribute strings to display the

column names for the table
§ for loop iteraZng through the sorted vector of rows of the table to

idenZfy groups and aggregate the sum of the menZoned column
Macro Signature: GROUP_BY_SUM(name, cols, sum_col)
Example Usage: GROUP_BY_SUM(Person,
 ((country)), salary
)

Code Snippet:

#define GROUP_BY_SUM(name, cols, sum_col) \
{ \
 std::vector<row_##name*> sort_vec(name.begin(), name.end()); \

 std::sort(sort_vec.begin(), sort_vec.end(), [](row_##name* left, row_##name* right){ \
 BOOST_PP_SEQ_FOR_EACH(EXPAND_FIELD_COMPARISON_ASC, _, BOOST_PP_VARIADIC_TO_SEQ cols)
\

 return false; \
 }); \
 if(sort_vec.size() != 0) \
 { \
 std::cout << "Sum_" << TO_STRING_EXPAND(sum_col) << "; "; \

 BOOST_PP_SEQ_FOR_EACH(DISPLAY_COL_NAMES, _, BOOST_PP_VARIADIC_TO_SEQ cols) \
 std::cout << "\n"; \
 row_##name* first_r = sort_vec[0]; \
 long long int curr_sum = sort_vec[0]->sum_col; \
 for(int i = 1; i<sort_vec.size(); ++i) \

 { \
 if(1 BOOST_PP_SEQ_FOR_EACH(GENERATE_EQUALITY_CMP_GROUP_BY, sort_vec[i],
BOOST_PP_VARIADIC_TO_SEQ cols)) \
 { \
 curr_sum += sort_vec[i]->sum_col; \

 } \
 else \
 { \
 std::cout << curr_sum << "; "; \
 BOOST_PP_SEQ_FOR_EACH(DISPLAY_VALS_COLS, first_r, BOOST_PP_VARIADIC_TO_SEQ

cols) \
 std::cout << "\n"; \
 curr_sum = sort_vec[i]->sum_col; \
 first_r = sort_vec[i]; \
 } \

 } \
 std::cout << curr_sum << "; "; \
 BOOST_PP_SEQ_FOR_EACH(DISPLAY_VALS_COLS, first_r, BOOST_PP_VARIADIC_TO_SEQ cols) \
 std::cout << "\n\n"; \

 } \
}

o GROUP_BY_SUM_PAR OperaZon: This is parallel version 1 of the above

GROUP_BY_SUM Query and is used to group the table based on the
menZoned columns and aggregate the sum of the menZoned column for
these groups. This generates the following code in-place using macro
programming:

§ code to create a copy of the vector of rows of the table
§ code to call the parallel merge sort funcZon on the above copy vector

with a comparator generated for comparing the menZoned columns
§ for loop iteraZng through the vector of alribute strings to display the

column names for the table
§ for loop iteraZng through the sorted vector of rows of the table to

idenZfy groups and aggregate the sum of the menZoned column

Macro Signature: GROUP_BY_SUM_PAR(name, cols, sum_col)

Example Usage: GROUP_BY_SUM_PAR(Person,
 ((country)), salary
)

Code Snippet:

#define GROUP_BY_SUM_PAR(name, cols, sum_col) \
{ \

 parlay::sequence<row_##name*> sort_seq(name.begin(), name.end()); \
 merge_sort(sort_seq, [](row_##name* left, row_##name* right){ \
 BOOST_PP_SEQ_FOR_EACH(EXPAND_FIELD_COMPARISON_ASC, _, BOOST_PP_VARIADIC_TO_SEQ cols)
\
 return false; \

 }); \
 if(sort_seq.size() != 0) \
 { \
 std::cout << "Sum_" << TO_STRING_EXPAND(sum_col) << "; "; \
 BOOST_PP_SEQ_FOR_EACH(DISPLAY_COL_NAMES, _, BOOST_PP_VARIADIC_TO_SEQ cols) \

 std::cout << "\n"; \
 row_##name* first_r = sort_seq[0]; \
 long long int curr_sum = sort_seq[0]->sum_col; \
 for(int i = 1; i<sort_seq.size(); ++i) \
 { \

 if(1 BOOST_PP_SEQ_FOR_EACH(GENERATE_EQUALITY_CMP_GROUP_BY, sort_seq[i],
BOOST_PP_VARIADIC_TO_SEQ cols)) \
 { \
 curr_sum += sort_seq[i]->sum_col; \
 } \

 else \
 { \
 std::cout << curr_sum << "; "; \
 BOOST_PP_SEQ_FOR_EACH(DISPLAY_VALS_COLS, first_r, BOOST_PP_VARIADIC_TO_SEQ
cols) \

 std::cout << "\n"; \
 curr_sum = sort_seq[i]->sum_col; \
 first_r = sort_seq[i]; \
 } \

 } \
 std::cout << curr_sum << "; "; \
 BOOST_PP_SEQ_FOR_EACH(DISPLAY_VALS_COLS, first_r, BOOST_PP_VARIADIC_TO_SEQ cols) \
 std::cout << "\n\n"; \
 } \

}

o GROUP_BY_SUM_PAR2 OperaZon: This is parallel version 2 of the above

GROUP_BY_SUM Query and is used to group the table based on the
menZoned columns and aggregate the sum of the menZoned column for
these groups. This generates the following code in-place using macro
programming:

§ code to create a copy of the vector of rows of the table
§ code to call the parallel merge sort funcZon on the above copy vector

with a comparator generated for comparing the menZoned columns
§ code to retrieve the indices of the rows of the table that have unique

values for the menZoned fields using parallel tabulate and parallel
filter

§ code to retrieve the sum of the menZoned column for the groups
corresponding to the above unique rows using parallel tabulate and
parallel reduce

§ for loop iteraZng through the vector of alribute strings to display the
column names for the table

§ for loop to display groups and their aggregated sum
Macro Signature: GROUP_BY_SUM_PAR2(name, cols, sum_col)
Example Usage: GROUP_BY_SUM_PAR2(Person,
 ((country)), salary
)

Code Snippet:

#define GROUP_BY_SUM_PAR2(name, cols, sum_col) \
{ \
 parlay::sequence<row_##name*> sort_seq(name.begin(), name.end()); \
 merge_sort(sort_seq, [](row_##name* left, row_##name* right){ \
 BOOST_PP_SEQ_FOR_EACH(EXPAND_FIELD_COMPARISON_ASC, _, BOOST_PP_VARIADIC_TO_SEQ cols)

\
 return false; \
 }); \
 auto ind_seq = parlay::tabulate(sort_seq.size(), [](int i) -> int { return i; }); \
 auto sum_col_seq = parlay::tabulate(sort_seq.size(), [&](int i) { return sort_seq[i]-

>sum_col; }); \
 auto boundaries_seq = parlay::filter(ind_seq, [&](auto ele) { return (ele == 0
BOOST_PP_SEQ_FOR_EACH(GENERATE_EQUALITY_CMP_GROUP_BY_PAR2, (sort_seq[ele], sort_seq[ele-1]),
BOOST_PP_VARIADIC_TO_SEQ cols)); }); \

 auto group_count_seq = parlay::tabulate(boundaries_seq.size(), [&](int i) -> int { \
 int st_ind = boundaries_seq[i]; \
 int en_ind = -1; \
 if(i + 1 == boundaries_seq.size()) \
 { \

 en_ind = sort_seq.size(); \
 } \
 else \
 { \
 en_ind = boundaries_seq[i+1]; \

 } \
 auto m = parlay::make_monoid([](long long int left, long long int right) {return
(left + right);} ,0); \
 auto sum_v = parlay::reduce(sum_col_seq.cut(st_ind, en_ind), m); \
 return sum_v; \

 }); \

 if(sort_seq.size() != 0) \
 { \
 std::cout << "Sum_" << TO_STRING_EXPAND(sum_col) << "; "; \

 BOOST_PP_SEQ_FOR_EACH(DISPLAY_COL_NAMES, _, BOOST_PP_VARIADIC_TO_SEQ cols) \
 std::cout << "\n"; \
 for(int i = 0; i<boundaries_seq.size(); ++i) \
 { \
 std::cout << group_count_seq[i] << "; "; \

 BOOST_PP_SEQ_FOR_EACH(DISPLAY_VALS_COLS, sort_seq[boundaries_seq[i]],
BOOST_PP_VARIADIC_TO_SEQ cols) \
 std::cout << "\n"; \
 } \
 std::cout << "\n\n"; \

 } \
}

The below graph summarizes the performance comparison between GROUP_BY_SUM ,
GROUP_BY_SUM_PAR, and GROUP_BY_SUM_PAR2 for a query to group the rows of the
Person relaZon (of 10000 rows) based on (country) and retrieve the sum of the salary for
these groups:

It can be observed that the Parallel Version 2 performs beler than the Parallel Version 1
with the increase in number of threads. This could be because the parallel version 2
algorithm using primiZves like tabulate, filter and reduce inherently contains more scope for
parallelism as compared to parallel version 1 which is essenZally sequenZal a^er the iniZal
parallel sort.

o GROUP_BY_AVG OperaZon: This is used to group the table based on the

menZoned columns and aggregate the average of the menZoned column for
these groups. This generates the following code in-place using macro
programming:

§ code to create a copy of the vector of rows of the table
§ code to call the sequenZal sort funcZon on the above copy vector

with a comparator generated for comparing the menZoned columns
§ for loop iteraZng through the vector of alribute strings to display the

column names for the table
§ for loop iteraZng through the sorted vector of rows of the table to

idenZfy groups and aggregate the average of the menZoned column
Macro Signature: GROUP_BY_AVG(name, cols, avg_col)
Example Usage: GROUP_BY_AVG(Person,
 ((country)), salary
)

Code Snippet:

#define GROUP_BY_AVG(name, cols, avg_col) \

{ \

 std::vector<row_##name*> sort_vec(name.begin(), name.end()); \
 std::sort(sort_vec.begin(), sort_vec.end(), [](row_##name* left, row_##name* right){ \

 BOOST_PP_SEQ_FOR_EACH(EXPAND_FIELD_COMPARISON_ASC, _, BOOST_PP_VARIADIC_TO_SEQ cols) \
 return false; \

 }); \
 if(sort_vec.size() != 0) \

 { \

 std::cout << "Avg_" << TO_STRING_EXPAND(avg_col) << "; "; \
 BOOST_PP_SEQ_FOR_EACH(DISPLAY_COL_NAMES, _, BOOST_PP_VARIADIC_TO_SEQ cols) \

 std::cout << "\n"; \
 row_##name* first_r = sort_vec[0]; \

 double curr_sum = sort_vec[0]->avg_col; \
 long long int curr_count = 1; \

 for(int i = 1; i<sort_vec.size(); ++i) \

 { \
 if(1 BOOST_PP_SEQ_FOR_EACH(GENERATE_EQUALITY_CMP_GROUP_BY, sort_vec[i],

BOOST_PP_VARIADIC_TO_SEQ cols)) \
 { \

 curr_sum += sort_vec[i]->avg_col; \
 ++curr_count; \

 } \
 else \

 { \

 std::cout << (curr_sum/curr_count) << "; "; \
 BOOST_PP_SEQ_FOR_EACH(DISPLAY_VALS_COLS, first_r, BOOST_PP_VARIADIC_TO_SEQ cols) \

 std::cout << "\n"; \
 curr_sum = sort_vec[i]->avg_col; \

 curr_count = 1; \
 first_r = sort_vec[i]; \

 } \

 } \
 std::cout << (curr_sum/curr_count) << "; "; \

 BOOST_PP_SEQ_FOR_EACH(DISPLAY_VALS_COLS, first_r, BOOST_PP_VARIADIC_TO_SEQ cols) \
 std::cout << "\n\n"; \

 } \

}

o GROUP_BY_AVG_PAR OperaZon: This is parallel version 1 of the above
GROUP_BY_AVG Query and is used to group the table based on the
menZoned columns and aggregate the average of the menZoned column for
these groups. This generates the following code in-place using macro
programming:

§ code to create a copy of the vector of rows of the table
§ code to call the parallel merge sort funcZon on the above copy vector

with a comparator generated for comparing the menZoned columns
§ for loop iteraZng through the vector of alribute strings to display the

column names for the table
§ for loop iteraZng through the sorted vector of rows of the table to

idenZfy groups and aggregate the average of the menZoned column

Macro Signature: GROUP_BY_AVG_PAR(name, cols, avg_col)
Example Usage: GROUP_BY_AVG_PAR(Person,
 ((country)), salary
)

Code Snippet:

#define GROUP_BY_AVG_PAR(name, cols, avg_col) \
{ \

 parlay::sequence<row_##name*> sort_seq(name.begin(), name.end()); \
 merge_sort(sort_seq, [](row_##name* left, row_##name* right){ \
 BOOST_PP_SEQ_FOR_EACH(EXPAND_FIELD_COMPARISON_ASC, _, BOOST_PP_VARIADIC_TO_SEQ cols)
\
 return false; \

 }); \
 if(sort_seq.size() != 0) \
 { \
 std::cout << "Avg_" << TO_STRING_EXPAND(avg_col) << "; "; \

 BOOST_PP_SEQ_FOR_EACH(DISPLAY_COL_NAMES, _, BOOST_PP_VARIADIC_TO_SEQ cols) \
 std::cout << "\n"; \
 row_##name* first_r = sort_seq[0]; \
 double curr_sum = sort_seq[0]->avg_col; \
 long long int curr_count = 1; \

 for(int i = 1; i<sort_seq.size(); ++i) \
 { \
 if(1 BOOST_PP_SEQ_FOR_EACH(GENERATE_EQUALITY_CMP_GROUP_BY, sort_seq[i],
BOOST_PP_VARIADIC_TO_SEQ cols)) \
 { \

 curr_sum += sort_seq[i]->avg_col; \
 ++curr_count; \
 } \
 else \
 { \

 std::cout << (curr_sum/curr_count) << "; "; \

 BOOST_PP_SEQ_FOR_EACH(DISPLAY_VALS_COLS, first_r, BOOST_PP_VARIADIC_TO_SEQ
cols) \
 std::cout << "\n"; \

 curr_sum = sort_seq[i]->avg_col; \
 curr_count = 1; \
 first_r = sort_seq[i]; \
 } \
 } \

 std::cout << (curr_sum/curr_count) << "; "; \
 BOOST_PP_SEQ_FOR_EACH(DISPLAY_VALS_COLS, first_r, BOOST_PP_VARIADIC_TO_SEQ cols) \
 std::cout << "\n\n"; \
 } \
}

o GROUP_BY_AVG_PAR2 OperaZon: This is parallel version 2 of the above

GROUP_BY_AVG Query and is used to group the table based on the
menZoned columns and aggregate the average of the menZoned column for
these groups. This generates the following code in-place using macro
programming:

§ code to create a copy of the vector of rows of the table
§ code to call the parallel merge sort funcZon on the above copy vector

with a comparator generated for comparing the menZoned columns
§ code to retrieve the indices of the rows of the table that have unique

values for the menZoned fields using parallel tabulate and parallel
filter

§ code to retrieve the average of the menZoned column for the groups
corresponding to the above unique rows using parallel tabulate and
parallel reduce

§ for loop iteraZng through the vector of alribute strings to display the
column names for the table

§ for loop to display groups and their aggregated average
Macro Signature: GROUP_BY_AVG_PAR2(name, cols, avg_col)
Example Usage: GROUP_BY_AVG_PAR2(Person,
 ((country)), salary
)

Code Snippet:

#define GROUP_BY_AVG_PAR2(name, cols, avg_col) \
{ \
 parlay::sequence<row_##name*> sort_seq(name.begin(), name.end()); \

 merge_sort(sort_seq, [](row_##name* left, row_##name* right){ \
 BOOST_PP_SEQ_FOR_EACH(EXPAND_FIELD_COMPARISON_ASC, _, BOOST_PP_VARIADIC_TO_SEQ cols)
\
 return false; \
 }); \

 auto ind_seq = parlay::tabulate(sort_seq.size(), [](int i) -> int { return i; }); \
 auto avg_col_seq = parlay::tabulate(sort_seq.size(), [&](int i) { return sort_seq[i]-
>avg_col; }); \

 auto boundaries_seq = parlay::filter(ind_seq, [&](auto ele) { return (ele == 0
BOOST_PP_SEQ_FOR_EACH(GENERATE_EQUALITY_CMP_GROUP_BY_PAR2, (sort_seq[ele], sort_seq[ele-1]),
BOOST_PP_VARIADIC_TO_SEQ cols)); }); \

 auto group_avg_seq = parlay::tabulate(boundaries_seq.size(), [&](int i) -> int { \
 int st_ind = boundaries_seq[i]; \
 int en_ind = -1; \
 if(i + 1 == boundaries_seq.size()) \
 { \

 en_ind = sort_seq.size(); \
 } \
 else \
 { \
 en_ind = boundaries_seq[i+1]; \

 } \
 auto m = parlay::make_monoid([](long long int left, long long int right) {return
(left + right);} ,0); \
 double sum_v = parlay::reduce(avg_col_seq.cut(st_ind, en_ind), m); \
 auto count_v = en_ind - st_ind; \

 double avg_v = sum_v/count_v; \
 return avg_v; \
 }); \
 if(sort_seq.size() != 0) \
 { \

 std::cout << "Avg_" << TO_STRING_EXPAND(avg_col) << "; "; \
 BOOST_PP_SEQ_FOR_EACH(DISPLAY_COL_NAMES, _, BOOST_PP_VARIADIC_TO_SEQ cols) \
 std::cout << "\n"; \
 for(int i = 0; i<boundaries_seq.size(); ++i) \
 { \

 std::cout << group_avg_seq[i] << "; "; \
 BOOST_PP_SEQ_FOR_EACH(DISPLAY_VALS_COLS, sort_seq[boundaries_seq[i]],
BOOST_PP_VARIADIC_TO_SEQ cols) \
 std::cout << "\n"; \

 } \
 std::cout << "\n\n"; \
 } \
}

The below graph summarizes the performance comparison between GROUP_BY_AVG,
GROUP_BY_AVG_PAR, and GROUP_BY_AVG_PAR2 for a query to group the rows of the
Person relaZon (of 10000 rows) based on (country) and retrieve the average of the salary for
these groups:

It can be observed that the Parallel Version 2 performs beler than the Parallel Version 1
with the increase in number of threads. This could be because the parallel version 2
algorithm using primiZves like tabulate, filter and reduce inherently contains more scope for
parallelism as compared to parallel version 1 which is essenZally sequenZal a^er the iniZal
parallel sort.

2. Auxiliary Data Structures and Func?ons:

• B-Tree: A B-Tree data structure was created to use as an indexing data structure for
the table based on its primary key fields

o BTreeNode Class: Represents a node of the B-Tree
§ It contains the following fields: an array of keys, the minimum degree,

an array of child pointers, current number of keys and Boolean to
denote a leaf

§ If ‘t’ is the minimum degree, each node contains between t and 2*t-1
keys and 2*t child pointers

§ It includes a constructor, destructor, funcZon to traverse through the
B-Tree nodes, funcZon to search for a key based on equality condiZon,
funcZon to insert into a non-full node, funcZon to split a child node
and a funcZon to traverse through the B-Tree nodes to retrieve the
keys falling within a certain range

§ Code Snippet for search based on equality condiZon:

template <typename T>
std::pair<BTreeNode<T>*, T> BTreeNode<T>::search_eq(const T &k, std::function<bool(const T&,
const T&)> comp)
{
 int i = 0;

 while (i < n && comp(keys[i], k)) i++;

 if (i < n && !comp(k, keys[i]) && !comp(keys[i], k))
 return {this, keys[i]};

 if (leaf)
 return {nullptr, T()};

 return C[i]->search_eq(k, comp);
}

§ Code Snippet for traversal through the B-Tree nodes to retrieve the

keys falling within a certain range:

template <typename T>
void BTreeNode<T>::range_traverse(const T &ge_val, const T &le_val, std::function<bool(const
T&, const T&)> comp)
{
 int i = 0;

 while (i < n && comp(keys[i], ge_val))
 {
 i++;
 }

 while (i < n && !comp(le_val, keys[i]))
 {
 if (!leaf)
 {

 C[i]->range_traverse(ge_val, le_val, comp);
 }
 // std::cout << " " << keys[i];
 boost::pfr::for_each_field(*(keys[i]), [](const auto& field) {
 std::cout << field << "; ";

 });
 std::cout << "\n";
 ++i;
 }

 if (!leaf)
 {
 C[i]->range_traverse(ge_val, le_val, comp);
 }

}

o BTree Class: Represents the B-Tree
§ It contains the following fields: BTreeNode poinZng to root and the

degree of the B-Tree (3 is the degree used in the queries above)
§ It includes a constructor, destructor, funcZon to traverse the tree,

insert into the tree, and a funcZon to perform a range traversal

• Parallel Merge Sort:

o A Parallel merge sort was implemented and is in turn used by many parallel
queries that require sorZng

o It switches to a sequenZal sort when the block size is below 100
o It includes a parallel merge that uses the median of the larger sorted sub-

block to perform binary search on the smaller sorted sub-block and
recursively merges the resultant splits accordingly

o It switches to a sequenZal merge when the size of the 2 sub-blocks under
consideraZon is below 1000 cumulaZvely

3. Func?onal Tes?ng

• FuncZonal TesZng was performed to verify the behaviour of the different funcZons

implemented and ensure that the sequenZal and parallel versions of a parZcular
funcZon are equivalent in terms of their correctness criterion

• A Person RelaZon was created consisZng of the fields: id, first name, last name, age,
country, salary

• 100 rows were inserted into the above relaZon
• The sequenZal and parallel versions (including version 1 and 2 for the group by

aggregate queries) of different funcZons were invoked on the above relaZon
• The generated outputs for the sequenZal and parallel versions were compared a^er

sorZng
• It was verified that the outputs for the sequenZal and parallel versions are

equivalent, hence denoZng their correctness

4. Performance Comparison

• Performance TesZng was done to compare the performance of the sequenZal and
parallel versions of the different implemented funcZons

• The performance results were generated on the crunchy5.cims.nyu.edu machine with
the following configuraZon:

o Sockets: 4
o Cores per socket: 8
o Threads per core: 2
o CPUs: 64 (4*8*2)
o Architecture: x86_64

• A Person RelaZon was created consisZng of the fields: id, first name, last name, age,
country, salary

• 10000 rows were inserted into the above relaZon
• The sequenZal and parallel versions (including version 1 and 2 for the group by

aggregate queries) of different funcZons were invoked on the above relaZon
• InstrumentaZon code was added to record the start and end Zmestamps of the

funcZons
• The parallel versions were executed for varying number of threads, namely,

1,2,4,8,16,32 threads
• The elapsed duraZon was computed and used to generate speedup graphs

Challenges Encountered

• The key challenge that was encountered was related to providing a working interface
to the different CRUD operaZons which accurately generates the required code while
also accounZng for the different cases. In this regard, various soluZons and
workarounds were implemented in order to effecZvely handle this such as using
macro programming and pre-processing direcZves provided by the C++ Boost library.

• It was alempted to implement the range query (>=x and <=y) on a primary key using
2 split operaZons on the B-Tree such that the first split generates a new tree with
values >= x. This new tree is split again to generate values <=y. It was possible to get
a working and correct implementaZon in this direcZon. However, while execuZng for
larger number of records, it triggered a few edge cases that could not be resolved in
Zme. Therefore, this implementaZon has not been considered for the performance
comparison (the implemented funcZons are sZll retained in the submiled source
code: range_query, split_ge and split_le funcZons, but they are not used). An
alternate range traversal funcZon was implemented and used for the performance
comparison.

Source Code

• The Source Code for this project can be found on the following GitHub Repository:
https://github.com/darshand15/PPA_Project

• The implementaZon of the parallel relaZonal database is provided as a header file
that can just be included in the client to avail the different funcZonaliZes. This
header file, named "header_par_db.h" is placed inside the ./include directory

• The ./include directory also contains parlaylib, which is used to avail the parallel fork-
join interface in C++

• Func?onal Tes?ng
o FuncZonal TesZng can be performed by running the script, ./run_script.sh

within the ./funcLonal_tesLng directory
o If the diff output from the script shows that the generated sequenZal and

parallel outputs were idenZcal, it denotes that the FuncZonal TesZng was
successful

o The recorded outputs are contained in the generated
./funcLonal_tesLng/output directory

o It has to be noted that FuncZonal TesZng uses a slightly different version of
the "header_par_db.h", named "header_par_db_N.h" contained in
the ./funcLonal_tesLng directory. This is because the parallel sort
in "header_par_db_N.h" switches to a sequenZal merge and sequenZal sort
for smaller block sizes as compared to the header in ./include, which is
opZmized for performance. This ensures that parallel behaviour is invoked
and verified despite the funcZonal tests having fewer records.

• Performance Tes?ng
o Performance TesZng can be performed by running the script, ./run_script.sh

within the ./performance_tesLng directory
o The recorded Zming measurements are contained in the generated

./performance_tesLng/Lming_measurements directory

• generate_insert.py inside ./generate_data directory can be used to generate input
data

• The ./generate_graphs directory contains the code to generate graphs
• The generated graphs are contained in the ./generate_graphs/graphs directory

