

Programming Parallel Algorithms Project

Project Title: Design and Implementation of a Parallel Relational Database from scratch

Project Group Member(s):

1. Darshan Dinesh Kumar (dd3888, N10942768)

Background

- Data is growing exponentially
- Storing and managing this vast data is complex
- Databases are the ubiquitous solutions
- Designing large-scale, efficient databases is challenging
- Advent of Multicore and Multiprocessor systems
- Parallelism as a potential candidate to improve performance

Overview of Implementation

Parallelizing the queries

- Parallel For Loop (Conditional Selection and Projection)
- Parallel Merge Sort (Order by and Sorting as a prerequisite)
- Parallel primitives like tabulate, filter, reduce (Group by and Aggregation)

B-Tree as an indexing data structure

- Search (Conditional selection based on primary key)
- Range Traversal (Selection within a range of primary key values)

Functional Testing

Performance Testing

- Person Relation with fields: *id(PK), fname, lname, age, country, salary*
- o 10000 rows with randomly generated data
- Results generated on *crunchy5.cims.nyu.edu* with 32 Cores each with 2 threads

Results

MYU

SELECT *
FROM Person
WHERE id == 7312

SELECT *
FROM Person
WHERE id >= 1291 AND id <= 1524

Results

SELECT *
FROM Person
ORDER BY fname, Iname, id ASC

SELECT AVG(salary), country FROM Person GROUP BY country

** **Parallel Version 1:** Parallel Merge Sort followed by sequential traversal **Parallel Version 2:** Parallel Merge Sort followed by algorithm using tabulate, filter, reduce

THANK YOU!

