
Mul$core Processors: Architecture & Programming Project

Project Group No.: 2
Project Title: Memory Allocator for OpenMP Programs

Project Group Members:

1. Name: Darshan Dinesh Kumar
NetID: dd3888
University ID: N10942768

Abstract

The end of Moore’s Law necessitates the development of innovaFve soluFons to augment
the performance of applicaFons rather than aHempFng to pack more transistors on a chip
and/or increasing the CPU frequency. In this direcFon, MulFcore and MulFprocessor
systems are now ubiquitous and are an ideal candidate to improve performance as they
enable the execuFon of parallel, mulFthreaded programs. However, these parallel
applicaFons are oUen inhibited by the memory allocator which can negaFvely throHle
performance and scalability. Moreover, the memory allocator can also introduce other
issues such as false sharing and fragmentaFon which can be considerable boHlenecks to
performance. This project introduces a scalable memory allocator that can be used in
conjuncFon with these parallel applicaFons (even those developed with OpenMP). It
introduces the concept of per thread heaps with memory ownership that can scale
efficiently while almost eliminaFng false sharing and minimizing fragmentaFon. The
generated results for the developed OpenMP benchmark programs denote substanFal
promise with the proposed and implemented memory allocator exhibiFng considerable
improvements in Scalability, False Sharing avoidance and low FragmentaFon as compared to
the Malloc and Hoard memory allocators.

Introduc@on

Moore's Law which stated that the number of transistors on a microchip doubles every 18
months—has slowed down significantly. For decades, Moore's Law drove the advancement
of compuFng power, allowing for exponenFal gains in performance simply by making
transistors smaller and increasing their number. However, as physical and economic
constraints make it increasingly difficult to further shrink transistors, the emphasis in
compuFng has shiUed.

Rather than relying on tradiFonal methods of increasing clock speeds or transistor density,
innovaFve soluFons are now required to augment performance. These soluFons are no
longer just about raw hardware improvements; they also need to focus on opFmizing
soUware systems to fully leverage the available hardware. This has led to a marked shiU
towards parallel compuFng—a paradigm that enables mulFple tasks to be executed

simultaneously. The transiFon from single-core to mulFcore and mulFprocessor systems has
been at the forefront of this shiU. These systems enable the simultaneous execuFon of
mulFple threads or processes, allowing programs to handle more computaFons in parallel,
which can result in significant performance improvements, especially for computaFonally
intensive applicaFons.

MulFcore and mulFprocessor systems, which consist of mulFple processor cores or mulFple
processors working in tandem, have become ubiquitous in modern compuFng, from
smartphones and laptops to large-scale server farms and high-performance compuFng
clusters. These systems are ideal candidates for improving performance, as they allow for
greater parallelism. In theory, this parallelism should allow applicaFons to scale beHer with
the number of cores, enabling faster execuFon Fmes for mulFthreaded programs. Programs
that can be divided into smaller tasks that run concurrently as parallel threads can
potenFally achieve linear or near-linear speedup with the addiFon of more cores, resulFng
in massive improvements in processing speed and efficiency.

However, the effecFve use of mulFcore and mulFprocessor systems is not as straigheorward
as simply adding more cores. While the hardware can support parallel execuFon, the
soUware—specifically, the memory allocator—oUen becomes a boHleneck in achieving
opFmal performance. A memory allocator is responsible for managing the allocaFon and
deallocaFon of memory during program execuFon. In mulFcore environments, memory
allocators can throHle performance and scalability for several reasons.

In a mulFthreaded environment, mulFple threads may aHempt to allocate and free memory
simultaneously, leading to the need for synchronizaFon mechanisms such as locks. If these
locks are not efficiently managed, they can result in significant contenFon and serializaFon
of memory operaFons, which ulFmately reduces the parallelism that the system can exploit.

Another important challenge related to memory allocaFon in parallel systems is false
sharing. False sharing occurs when mulFple threads access different variables that are
located on the same cache line. When mulFple threads modify variables that are located on
the same cache line, the CPU cache becomes inefficient because each thread’s modificaFon
forces the cache line to be invalidated and reloaded from memory (in other words, the
cache coherency protocol kicks in), resulFng in a significant performance penalty.

AddiFonally, many tradiFonal memory allocators are not opFmized to handle fragmentaFon
which can degrade system performance over Fme, especially in long-running applicaFons or
applicaFons with dynamic memory allocaFon paHerns, as the allocator has to work harder
to find conFguous free blocks or to recombine fragmented blocks of memory.

This project proposed the development of a scalable memory allocator that aHempts to
solve some of the above problems that are inherent to memory allocators, especially in a
mulFthreaded environment. It introduces the concept of per thread heaps where every
thread is allocated a dedicated heap with a certain number of iniFal pages. This greatly aids
in scalability as different threads can be serviced by their private heaps without affecFng the
other heaps. A memory allocaFon request originaFng from a certain thread is only serviced
by the heap corresponding to that thread. On the other hand, a memory free operaFon can

aHempt to free the memory block allocated by a different thread. The proposed allocator
introduces the concept of ownership where the freed memory block is always returned to
the original thread’s heap. This reduces false sharing as it ensures that memory blocks of
different threads are not present in the same heap, hence, not on the same cache line.
Moreover, since the allocaFon of memory is in terms of page sizes, which happen to be
cache aligned, it can be guaranteed that the memory blocks of two different threads will
never fall in the same page and hence will never fall on the same cache line. This pracFcally
eliminates false sharing across threads. Further, the memory allocator acFvely merges free
blocks and unmaps freed pages back to the OperaFng System, which helps in reducing
fragmentaFon.

Literature Survey

There has been considerable work in the direcFon of developing different memory
allocators. The default and well-known memory allocator that is popularly used is malloc
and free. The C Standard Library introduced malloc and free as part of dynamic memory
management. These funcFons were derived from early systems and are now integral to
memory allocaFon on systems that do not rely on automaFc garbage collecFon. The malloc
funcFon allocates a specified number of bytes of memory and returns a pointer to the first
byte of the allocated block. If the allocaFon is successful, the pointer can be used to access
the memory. If allocaFon fails, malloc returns NULL. The free funcFon deallocates memory
previously allocated by malloc, returning it to the system. This prevents memory leaks by
ensuring that the memory is no longer in use.

In terms of Scalable Memory Allocators, the Hoard Scalable Memory Allocator is a state-of-
the-art allocator for mulFthreaded applicaFons. The Hoard allocator addresses the various
challenges inherent to scalable memory allocaFon such as Lock contenFon, Scalability,
fragmentaFon, concurrency, etc. by employing a scalable approach that minimizes lock
contenFon and reduces fragmentaFon in mulFthreaded environments. The paper proposes
several techniques that differenFate Hoard from exisFng memory allocators, as listed below:

• Hoard uses thread-local storage to reduce contenFon. Each thread maintains its own
local memory pool, minimizing the need to access global memory. This technique
allows threads to allocate and deallocate memory from their own pools, reducing the
frequency of synchronizaFon operaFons across threads.

• The Hoard allocator minimizes lock contenFon by using fine-grained locking and local
pools. Threads allocate memory from their local pool, and when a thread runs out of
space in its local pool, it may access a global pool. The global pool is protected by a
lock, but contenFon is minimized because it is rarely accessed by threads compared
to other allocators that heavily rely on global locks.

• Hoard employs a hierarchical memory pooling approach, where different pool sizes
are dynamically allocated based on the size of the requested memory block. This
helps manage fragmentaFon by ensuring that memory is grouped in sizes that are
appropriate for the applicaFon’s allocaFon paHerns.

• Hoard includes an efficient strategy for managing both small and large memory
blocks. Small blocks are allocated from thread-local pools, while larger blocks are
handled by the global pool. This technique opFmizes the allocator for both fine-

grained memory requests (common in many small objects) and coarse-grained
requests (for large data structures).

• The Hoard allocator aims to minimize fragmentaFon by using efficient memory block
management techniques. The hierarchical pooling structure and the use of localized
memory pools help reduce both external and internal fragmentaFon.

• Hoard uses a slab allocator design for certain memory management tasks. This
approach improves performance by keeping a pre-allocated set of memory blocks
(slabs) of a given size, reducing the need for frequent allocaFon and deallocaFon. It
also reduces fragmentaFon by grouping similar-sized allocaFons.

Taxonomy of Memory Allocators

In general, the different memory allocator algorithms in Literature can be categorized into
the following categories:

• Serial Single Heap: Here, only a single processor may access the heap at any point in
Fme as the global heap is typically protected through a single lock which serializes
memory operaFons. This leads to considerable lock contenFon in mulFthreaded
applicaFons which affects scalability and hence are not very suitable for
mulFthreaded applicaFons. As it involves a single heap, they acFvely induce false
sharing which can be a significant boHleneck for performance. Some known Serial
single Heap Allocators are the default allocators in Solaris and Windows NT/2000.

• Concurrent Single Heap: Here, the heap is implemented as a concurrent data
structure such as a concurrent B-tree and hence many processors can simultaneously
operate on one shared heap. As it involves a single heap, they acFvely induce false
sharing which can be a significant boHleneck for performance. The concurrent data
structure also requires the use of many locks and atomic update operaFons which
can end up being quite expensive.

• Pure Private Heaps: Here, every processor has its own per-processor heap that it
uses to service the memory operaFons which can be beHer suited for scalability. This
is purely private because every processor never accesses any other heap for any
memory operaFon. Memory allocated by one thread can be freed by another thread.
This freed memory is placed in the second thread’s heap thereby passively inducing
false sharing. Pure private heaps are used in STL’s pthread_alloc and Cilk.

• Private Heaps with Ownership: Here, every processor has its own heap but the
memory is returned to the owner processor’s heap on a free operaFon thereby
reducing false sharing scenarios while being scalable. MT-malloc, Ptmalloc and
LKmalloc are some of the memory allocators that use private heaps with ownership.
The proposed allocator implemented as part of this project, namely, My_mem_alloc
falls under this category of having private heaps with ownership. It aHempts to
scalably support mulFthreaded applicaFons by reducing false sharing and
fragmentaFon.

• Private Heaps with Thresholds: Here, every processor has its own heap which can
hold a limited amount of free memory. When a per-processor heap has more than a
certain amount of free memory (the threshold), some porFon of the free memory is
moved to a shared heap. They can passively induce false sharing as pieces of the
same cache line can be recycled. As long as the amount of free memory does not
exceed the threshold, pieces of the same cache line spread across processors will be

repeatedly re-used to saFsfy memory requests, resulFng in false sharing scenarios.
DYNIX kernel allocator and Hoard are some of the Memory allocators that employ
private heaps with thresholds.

Proposed Idea

As part of the research, experimentaFon and development of the Scalable Memory Allocator
for OpenMP Programs, 3 different incremental versions of the Memory Allocator were
developed and experimented with, which are detailed as follows:

1. SequenJal Memory Allocator (Single-threaded only implementaJon)

This was the very first version of the Memory Allocator developed which supported
only single-threaded client programs. The main objecFve of this allocator was to
develop and finalize some of the core ideas and features inherent to the Memory
Allocator, listed as follows:

a. A Book Keeping Node to maintain the metadata informaFon of the memory

block it is associated with, like the size of the memory block, and whether it is
free or allocated. It also keeps the pointers to the next and previous book
keeping nodes and hence is implemented as a doubly linked list of book
keeping nodes.

b. A Free List node to maintain informaFon of the memory blocks that are not
currently allocated and hence can be used to service a future memory
allocaFon request. These nodes contain pointers to the book keeping nodes
of the free memory blocks. They also contain pointers to the previous and
next free list nodes, hence the free list is a doubly linked list of free list nodes.

c. One important consideraFon was regarding the Alignment of the memory
blocks. It was made sure that any memory request is first aligned to the
nearest word boundary to facilitate efficient load/store operaFons for this
memory block. Further, it was decided that every request to the operaFng
system for memory (an mmap call) will be in terms of page sizes alone. This
was done keeping in mind that an mmap call is a system call which can have
substanFal latency. Hence, rather than making repeated mmap system calls
for smaller sized memory, it would be prudent to get a larger sized memory
block which can then be internally managed to service future memory
requests. Therefore, on a memory allocaFon request, the requested size is
aligned to the nearest page boundary and then an mmap call is made for the
deduced number of pages.

d. On a Memory AllocaJon request, the requested size is first aligned to the
word boundary as explained above. The free list is then searched through to
find a free block (if, any) that can service this request. The best fit algorithm is
implemented to find such a free block; therefore, it searches for the smallest
free memory block that is large enough to service the given memory request.

i. If such a memory block is found, a split operaFon is performed to split
the block into 2 blocks, one of the requested size, and another with

the remaining memory (if the remaining memory is not sufficiently
large, that is it is smaller than the size of the book keeping node, the
split operaFon is not performed). The newly split block is added to the
front of the free list keeping in mind locality and the allocated free
block is removed from the free list. The book keeping nodes are
created and updated accordingly.

ii. If no such memory block is found in the free list, then there is a
requirement to allocate memory by requesFng the OperaFng System.
This is done through an mmap call. Here, the requested size is aligned
to the nearest page boundary as explained above and the newly
deduced size (which will be a mulFple of the page size) is requested as
part of the mmap system call. Once this memory is mapped, a similar
split operaFon is performed as before (if required) resulFng in a block
to address the request and a remaining memory block. The free list
and the book keeping nodes are updated accordingly.

e. On a Memory Free Request, certain condiFon checks are performed first,
such as, if the passed pointer is NULL, or if the memory block has already
been freed. If the above condiFons are not met, the actual free operaFon is
performed. The previous and next memory blocks of the memory block to be
freed is checked to determine if they are free as well which would allow them
to be merged with the current block. This merge operaFon handles a variety
of cases and performs the required updates to the book keeping nodes and
the free list. Once the merge operaFon is done, it is checked to see if the
memory block to be freed exceeds the page size and is such that the starFng
memory address of this block aligns with a page boundary. If these condiFons
are met, this memory block can be unmapped using the unmap system call.
First, a split operaFon is performed to split any residual parts of the memory
block aUer dividing the size by the page size (as the unmap operaFon is done
only in terms of pages). Then, the unmap system call is made to unmap the
deduced number of pages.

f. Further, funcFons to display the free list and the list of the book keeping
nodes along with their memory mapping were developed to aid the
development, experimentaFon and verificaFon of the various features
discussed above.

g. With this version of the memory allocator, it was possible to develop,
experiment and verify some of the fundamental ideas inherent to the
memory allocator being designed. These ideas form the base for the future
versions of the memory allocator.

2. Concurrent Memory Allocator – Serial Single Heap

The previous version of the memory allocator was such that it was completely
sequenFal and could only support single threaded client applicaFons. The objecFve
of this version of the allocator was to augment the previous version to support
mulFthreaded client applicaFons. The fundamental ideas and features of this
version, a concurrent memory allocator is summarized below:

a. The core features of book keeping node, free list, alignment to word and page
boundaries, search through best fit algorithm, split and merge operaFons,
map and unmap system calls remain similar to the previous version of the
memory allocator described above.

b. The significant modificaFon for this version of the memory allocator is the
introducFon of a mutex variable to lock and unlock access to the data
structures and operaFons of the single heap under consideraFon. Thereby,
this mutex variable provides mutual exclusion to support mulFthreaded
applicaFons performing parallel memory allocaFon and free operaFons.

c. On a memory allocaFon request, a lock operaFon to the above mutex is
performed. The rest of the operaFons crucial to a memory allocaFon
operaFon like finding a free block, splimng free blocks, map system call, etc.
are performed only aUer this lock is acquired. The lock is released aUer the
required operaFons are performed.

d. Similarly, on a memory free request, a lock operaFon to the above mutex is
performed. The rest of the operaFons crucial to a memory free operaFon like
merging free blocks, unmap system call, etc. are performed only aUer this
lock is acquired. The lock is released aUer the required operaFons are
performed.

e. Care was taken to handle the locking for various cases such as acquiring the
lock only if required, for example, if the memory allocaFon request was for a
size lesser than 0, it can directly return, or if the free request was for a NULL
pointer, it can directly return. In such cases, the lock was not even acquired.
In certain other cases, care was also taken to unlock the mutex before
returning from the funcFon, such as aUer finding a block in the free list which
is a condiFonal exit or aUer deducing that the block to be freed is already
freed. The base case of returning at the end of funcFons, aUer performing all
the required operaFons was explicitly handled such that the lock to the
mutex is released before returning from the funcFon.

f. Therefore, the introducFon of the mutex and the uFlizaFon of its lock and
unlock operaFons to provide concurrent access to a single heap, allows
mulFthreaded applicaFons to perform memory allocaFon requests and
memory free requests using this allocator. However, as the mutex lock
prevents mulFple threads from accessing the heap simultaneously, at any
given point of Fme, only a single thread can access the heap to service its
memory allocaFon and free requests. Therefore, this version of the memory
allocator serializes the memory allocaFon and free operaFons.

g. With this version of the memory allocator, it was possible to support
mulFthreaded applicaFons performing memory allocaFon and memory free
requests. Specifically, this version allows for concurrent memory allocaFon
and free by different threads but not parallel memory allocaFon and free as
the mutex serializes the access and operaFons to the single shared heap.

h. It can be specifically noted that this version of the memory allocator uses a
single shared heap to service the memory requests from different threads.
This clearly is a boHleneck to performance and this was precisely the concern
that was aHempted to be handled by the next incremental version of the
memory allocator.

3. Concurrent and Scalable Memory Allocator – Per thread Heap

As discussed above, although the previous version of the memory allocator supports
mulFthreaded applicaFons, it serializes the memory operaFons due to the controlled
access to the single shared heap. As part of this incremental version of the memory
allocator, various ideas and features were implemented to work around this and
beHer support concurrent, scalable and parallel memory allocaFon. These are
summarized as below:

a. The core features of book keeping node, free list, alignment to word and page
boundaries, search through best fit algorithm, split and merge operaFons,
map and unmap system calls remain similar to the previous versions of the
memory allocator described above.

b. The significant difference is the introducFon of a heap per thread rather than
the single global heap in the previous version of the memory allocator. This
heap is dedicated to a single thread and maintains a private linked list of book
keeping nodes, private free list and a mutex to control access to this per
thread heap. AddiFonally, other required informaFon like the number of
pages allocated to this per thread heap, the last memory mapped address are
maintained to support the various operaFons on the per thread heap.
Therefore, there is an array of per thread heaps where every heap
corresponds to a single thread and services the memory requests originaFng
from that thread.

c. It was also decided that each of these heaps will have some iniJal free
memory mapped to each of them. The implemented version dedicates 2
pages of iniFal free memory to every per thread heap (this can be configured
and experimented with based on the requirements of different applicaFons).
This iniFal free memory is mapped as part of an iniFalizaFon call. This
iniFalizaFon is performed only once, as part of the first memory allocaFon
request received by the memory allocator. In order to safely and correctly
support this, a mutex is used which provides mutual exclusion in relaFon to
the read, and condiFonal modify operaFons performed during init. The init
call iniFalizes and grounds the various fields of the per thread heap, maps 2
pages of iniFal free memory to every per thread heap, updates the free list
with this free memory block and updates the number of pages allocated to
this per thread heap.

d. On a memory allocaJon request, the thread number of the thread from
which the request originated is deduced. Subsequently, the mutex
corresponding to this thread’s heap is locked. Once the lock is acquired, the
operaFons inherent to memory allocaFon are performed as before, such as,
finding a free block through the best fit algorithm, mapping memory through
mmap system call, split operaFon if required, etc. Finally, once the required
memory is allocated, the mutex of this thread’s heap is unlocked.

e. Similarly, on a memory free request, the thread number of the thread from
which the request originated is deduced. It is to be noted here that there is
one specific case that needs to be handled in relaFon to memory free. As the
programmer is dynamically allocaFng memory on the heap, the logical view

of the programmer is that every thread can access this dynamically allocated
memory, irrespecFve of the thread that allocated it. Therefore, specifically, in
regards to the memory allocator, any thread can free a dynamically allocated
memory. This had to be explicitly taken care of by the memory free operaFon
in this version of the memory allocator. First, the current thread’s heap is
searched through to verify if it contains the memory to be freed. As before,
this is done aUer acquiring the mutex for this thread’s heap. If not found, this
mutex is first released and the rest of the per thread heaps are searched
through to determine where the memory block to be freed is present. As
before, this is done aUer acquiring the lock to the mutex of the per thread
heap under consideraFon. Once the memory block is found on a parFcular
per thread heap, the operaFons inherent to the memory free are performed
as before, such as, merging free blocks, splimng and unmapping if required,
etc. One explicit condiFon taken care of is checking the number of mapped
pages against the iniFal mapped pages. The unmap operaFon is done only if
aUer unmapping, the remaining pages is sFll greater than or equal to the
iniFal number of pages (here, 2). This way, it is guaranteed that every per
thread heap has at least 2 pages mapped to it at any point in Fme.

f. The design of a private heap per thread was due to several reasons. One of
them was to aid speed and scalability as every thread has a dedicated heap
which can be used to service its memory requests without interfering with
the other threads or their heaps. The lock contenFon is also significantly
reduced as a thread only aHempts to acquire the mutex for its per thread
heap apart from the free operaFon check detailed above.

g. The design also considered various aspects related to False Sharing, an issue
inherent to and very prominent in memory allocaFon for mulFthreaded
applicaFons. As the memory mapping for the per thread heaps is always done
in terms of pages, it can be guaranteed that no two per thread heaps will
have memory allocated on the same page. More specifically, as the pages are
cache aligned, it can also be guaranteed that no two per thread heaps will
have memory allocated on the same cache line. This significantly reduces and
pracFcally eliminates false sharing across threads. Moreover, when a memory
block is freed, the free block is maintained in the original thread itself, rather
than moving it to the thread freeing the block. This reduces false sharing as
the movement of free blocks could make it such that a free block moved to a
new thread is adjacent to a memory block of the original thread, giving rise to
false sharing scenarios.

h. AddiFonally, the design considered various aspects related to fragmentaFon
and aHempted to keep the fragmentaFon as low as possible. The
maintenance of a free list combined with the best fit algorithm search
through the free list helps to allocate memory from previously free blocks
rather than making a new mmap call. The merge operaFon also significantly
aids low fragmentaFon by merging adjacent free blocks. Further, the unmap
operaFon is performed based on the remaining number of pages and acFvely
returns memory to the OperaFng System.

i. This 3rd version of the memory allocator with per thread heaps is the one
used for all experiments performed and for generaFng all the required
results.

j. This 3rd version of the memory allocator is referred to as “My_mem_alloc”.

Note: Each of the above 3 versions implement and expose the following funcFons:

1. void* my_mem_alloc(size_t size): This is the funcFon to allocate memory of the
menFoned size

2. void my_mem_free(void* ptr): This is the funcFon to free memory pointed by the
menFoned pointer

3. void display_free_list(): This is a helper funcFon to display the current contents of
the free list

4. void display_mem_map(): This is a helper funcFon to display the current memory
mapping, specifically the book keeping nodes and their contents

Experimental Setup

All the experiments were performed and the results were gathered on the crunchy2 CIMS
machine which has the following configuraFon:

Architecture x86_64
Number of CPUs 64
Number of Sockets 4
Number of Cores per Socket 8
Number of Threads per Core 2
L1d Cache 1 MiB (64 instances)
L1i Cache 2 MiB (32 instances)
L2 Cache 64 MiB (32 instances)
L3 Cache 48 MiB (8 instances)
Page Size 4K bytes
Cache Alignment 64 bytes
L1d Cache Line Size 64 bytes

In order to verify the implemented funcFonaliFes and features of the developed memory
allocator (the 3 versions explained above), sanity clients for the 3 versions were designed.
This performs different Memory AllocaFon and Memory Free requests and checks for
various cases. The sanity client is named as client_mem_alloc.cpp and is placed within the
folder of each of the implemented versions of memory allocator. The sanity client for the
third finalized version is an OpenMP program performing memory allocaFon and free
requests from different threads. A makefile is also provided within the folder for each of
these versions.

Further details regarding the Source Code folder hierarchy, Benchmark programs folder
hierarchy, steps and commands to execute the different versions and the benchmarks are
detailed in the aHached readme.txt file.

Experiments and Analysis:

In order to compare the different memory allocators, namely Malloc, Hoard and
My_mem_alloc, various benchmark programs were developed as explained below:

1. Speed: In order to compare the different memory allocators for speed, single
threaded and mulFthreaded benchmark programs were developed under the
following categories:

a. No Malloc or free: This benchmark program does not perform any malloc or
free operaFon and just performs a few basic arithmeFc operaFons within a
loop. The single threaded version uses a single thread whereas the
mulFthreaded version uses 8 threads simultaneously performing these
operaFons.

b. CPU bound: This benchmark program performs significantly greater number
of arithmeFc operaFons as compared to memory allocaFon and memory free
operaFons, hence is CPU bound. Each thread dynamically allocates an integer
array of 100 elements, performs various arithmeFc operaFons and then
finally frees the integer array. The single threaded version uses a single thread
whereas the mulFthreaded version uses 8 threads simultaneously performing
these operaFons.

c. Memory bound: This benchmark program performs a substanFal number of
memory allocaFon and memory free operaFons, hence is Memory bound.
Each thread allocates a double pointer array of large size. Each element of
this double pointer array is iniFalized in a loop with a dynamically allocated
double array of large size. A second loop is used to free the double arrays and
then finally the double pointer array is freed. The single threaded version
uses a single thread whereas the mulFthreaded version uses 8 threads
simultaneously performing these operaFons.

2. Scalability: The scalability benchmark program is developed such that every thread
allocates 100000/t (where ‘t’ is the number of threads) 12-byte objects (3 integers)
and then frees the allocated objects. This benchmark program is then executed for
different number of threads, ranging from 1 to 14.

3. False Sharing Avoidance: With regards to False Sharing, two benchmark programs
were developed for the following categories:

a. AcJve False Sharing: In this benchmark program, every thread allocates 8
bytes (2 integer) objects, performs a large number of write operaFons on
these objects and then frees the objects. This benchmark program uses 8
threads. Since these 8 threads simultaneously allocate 8 bytes, all the
requested memory (8*8 = 64 bytes) can fit into a single cache line of 64 bytes.
Therefore, this benchmark program verifies the acFve false sharing scenario.

b. Passive False Sharing: In this benchmark program, the sequenFal part of the
program allocates 8 integer objects which are then handed over to each of
the 8 threads. Every thread frees one of the integer objects, then allocates a
new integer object, performs a large number of write operaFons on it and

then finally frees the integer object. The nature of this program is such that it
can have false sharing at the beginning given that the 8 integer objects can be
conFguous and are part of the same cache line. Once these objects are freed,
the memory allocator can passively induce false sharing for future mallocs if
they are allocated using the memory freed by these objects, thereby falling in
the same cache line as the objects of other threads. Therefore, this
benchmark program verifies the passive false sharing scenario.

4. FragmentaJon: The FragmentaFon benchmark program is developed such that every
thread allocates an integer pointer array of large size, each pointer is then iniFalized
to a dynamically allocated integer array of large size (say, size ‘s1’). Then every
alternate element of the integer pointer array is freed, aUer which a new integer
pointer array is allocated, where every pointer is then iniFalized to an integer array of
the same size as before – ‘s1’. Therefore, half of these new memory requests can be
saFsfied by the memory freed from the previous array. If not handled properly, the
memory allocator can map and allocate fresh memory rather than reusing these
freed blocks, leading to high fragmentaFon. Therefore, this benchmark program
verifies the fragmentaFon scenario for the different memory allocators.

• All the benchmark programs are provided under appropriately named folders under

the comparison_tes7ng folder hierarchy.
• The execuFon Fme calculaFon for the different programs was performed using the

omp_get_w7me() uFlity.

Details regarding running the benchmark programs for the different memory allocators:
• The benchmark programs are linked with the C standard library (cstdlib) to invoke the

default malloc and free calls.
• For the Hoard memory allocator, the source code for Hoard is first downloaded from

the Github Repository (hHps://github.com/emeryberger/Hoard) which is then built
to generate the libhoard.so shared object file. This is then linked with the object file
of the benchmark program to generate the required executable.

• For the My_mem_alloc version of the memory allocator, the custom_mem_alloc.h
header file provided in the 3rd version (Per thread Heaps) is used to provide the
required interface. The custom_mem_alloc.o generated for the Per thread Heaps
version is linked with the benchmark program to generate the required executable.

Results

Malloc, Hoard and My_mem_alloc memory allocators were compared based on the
following metrics using the benchmarks detailed above:

1. Speed:

In order to compare the different memory allocators for speed, the execuFon Fme in
seconds was used as the metric.

The figure below summarizes the speed comparison of the memory allocators for the
single threaded benchmarks:

From the above figure it can be seen that the execuFon Fmes of the different
memory allocators are very similar for the No_malloc_free and CPU_bound
benchmarks, which is the expected scenario as these benchmarks do not have a
significant number of memory operaFons. For the Mem_bound benchmark, it can be
seen that execuFon Fmes are very similar for Malloc and Hoard whereas the
execuFon Fme of My_mem_alloc is relaFvely higher. This increased execuFon Fme
for My_mem_alloc comes from the addiFonal operaFons of maintaining a thread per
heap, mapping and maintaining some iniFal number of pages to each heap,
performing a best fit algorithm search to find the free block and merging free blocks.

The figure below summarizes the speed comparison of the memory allocators for the
mulFthreaded benchmarks, that were executed with 8 threads:

From the above figure it can be seen that the execuFon Fmes of the different
memory allocators are very similar for the No_malloc_free and CPU_bound
benchmarks, which is the expected scenario as these benchmarks do not have a
significant number of memory operaFons. For the Mem_bound benchmark, it can be
seen that execuFon Fme is the least for Hoard, second least is for Malloc and finally
the highest is for My_mem_alloc denoFng that Hoard exhibits good performance in
terms of execuFon Fme for Memory Bound benchmarks. The increased execuFon
Fme for My_mem_alloc comes from the addiFonal operaFons of maintaining a
thread per heap, mapping and maintaining some iniFal number of pages to each
heap, performing a best fit algorithm search to find the free block and merging free
blocks.

2. Scalability:

In order to compare the different memory allocators for scalability, the calculated
speedup in relaFon to one thread [Speedup for n threads = (ExecuFon Fme for 1
thread)/(ExecuFon Fme for n threads)] was used as the metric.

The figure below summarizes the scalability comparison of the memory allocators for
the scalability benchmarks:

From the figure above, it can be seen that the speedup increases for the
My_mem_alloc memory allocator with the increase in the number of threads. On the
other hand, the speedup for the malloc and hoard memory allocators increases very
negligibly with the increase in the number of threads. A general rule of thumb is that
as the number of threads increases, the performance of the memory allocator must
scale, ideally linearly, with the increase in the number of threads to ensure scalable
applicaFon performance. Here, the speedup is the indicator for performance.
Although the speedup increase for My_mem_alloc is not completely linear (in fact it
is beHer than linear speedup in most of the cases), the speedup increase seen with
the increase in the number of threads in the above graph denotes that it is the most
scalable memory allocator, quite considerably as compared to the Malloc and Hoard
Memory Allocators. This could be due to the fact that even with the increased
number of threads, every thread sFll has access to a private per thread heap to
service the memory requests. As these per thread heaps are logically independent,
they can beHer service the memory requests simultaneously coming from the
different parallel threads, even with an increase in the number of threads.

3. False Sharing Avoidance:

In order to compare the different memory allocators for false sharing avoidance, the
execuFon Fme in seconds was used as the metric.

The figure below summarizes the false sharing comparison of the memory allocators
for the false sharing benchmarks which were executed with 8 threads:

From the above figure, it can be seen that the My_mem_alloc memory allocator has
the best performance (execuFon Fme) for both the AcFve False Sharing and Passive
False Sharing benchmarks. In general, a memory allocator should not introduce false
sharing of cache lines in which different threads inadvertently share data on the
same cache line. As the design of the My_mem_alloc memory allocator is such that
there are private heaps per thread from which the memory requests generated from
that thread are serviced and the fact that the memory is mapped only in terms of
pages (which are cache aligned), it ensures that memory on two different per thread
heaps are never in the same page and hence never in the same cache line. Therefore,
the My_mem_alloc memory allocator pracFcally eliminates false sharing which is
also corroborated by its performance for the false sharing benchmarks. On the other
hand, the other two memory allocators, namely Malloc and Hoard have comparable
performance to the My_mem_alloc memory allocator for the AcFve False Sharing
benchmark but a relaFvely worse performance for the Passive False Sharing
benchmark, denoFng that Malloc and Hoard do not completely avoid false sharing,
especially for the Passively induced False Sharing scenario.

4. FragmentaJon:

In order to compare the different memory allocators for fragmentaFon, the
fragmentaFon raFo was used as the metric. The fragmentaFon raFo can be defined
as the maximum amount of memory allocated from the operaFng system divided by
the maximum amount of memory required by the applicaFon. The maximum
amount of memory required by the applicaFon can be deduced by analyzing the

benchmark program. On the other hand, the maximum amount of memory allocated
from the operaFng system cannot be deduced very easily. This is more of an issue
considering how it is not possible to tap into the implementaFons of malloc and
hoard and add addiFonal markers to calculate this informaFon. As the comparison
needs to be performed uniformly across the memory allocators it was decided to use
a way of esFmaFng this number. The “cat /proc/<pid>/maps | grep heap” linux
command gives the memory range for the heap area of the process under
consideraFon (Here pid is the process id of the executable under consideraFon which
can be deduced from the “ps aux | grep <executable_name>” command). By adding
an explicit sleep for a large number of seconds at the end of the program, the
process can be guaranteed to be in execuFon and hence the range of the heap can
be deduced as explained above. This range of heap (say, start-end) is then used to
deduce the number of bytes by performing a simple subtracFon between end and
start. This is used to esFmate the maximum amount of memory allocated from the
operaFng system which is then used to calculate the fragmentaFon raFo.

The figure below summarizes the fragmentaFon comparison of the memory
allocators for the fragmentaFon benchmarks which were executed with 8 threads:

From the above graph, it can be seen that the My_mem_alloc memory allocator has
a very low fragmentaFon raFo as compared to the malloc and hoard memory
allocators denoFng that the My_mem_alloc memory allocator is such that it aids low
fragmentaFon. This can be due to the fact that every thread has a private heap to
service the memory requests where the free blocks are searched through in a best fit
manner; the merge free block operaFon which merges adjacent free blocks (this can
be crucial in reducing fragmentaFon) and the unmap operaFon which acFvely
releases mapped memory to the operaFng system when memory objects are freed.

Conclusion

• This project introduced a scalable memory allocator that uses the concept of per-
thread heaps with ownership where a heap is dedicated to a parFcular thread and is
iniFalized with a certain number of pages. It implements various features such as
splimng and merging of free blocks, best fit algorithm to find free blocks, unmapping
of freed memory, returning free memory to the original thread, aligning memory
block requests to word boundaries and aligning memory map requests to page sizes
to eliminate false sharing.

• It also introduces various benchmark programs under the categories of Speed,
Scalability, False Sharing Avoidance and FragmentaFon which are used to compare
and contrast the proposed memory allocator (My_mem_alloc) with the Malloc and
Hoard memory allocators. The generated results are promising and show that the
proposed memory allocator (My_mem_alloc) exhibits beHer results especially for
Scalability, False Sharing avoidance and Low FragmentaFon as compared to the
Malloc and Hoard memory allocators.

• AdmiHedly, there is substanFal scope for future work. One of the main drawbacks of
the proposed memory allocator seems to be its speed in relaFon to the Malloc and
Hoard memory allocators. This could be due to the nature of some of its inherent
features like iniFalizing per thread heaps with some pages, merging of free blocks,
best fit algorithm to find free blocks, unmapping freed blocks, etc. In this direcFon,
aHempts could be made to improve the speed while keeping the other benefits
intact, for example, experimenFng with other find free block algorithms like first fit,
last fit; unmapping based on some memory usage staFsFcs, compacFon etc.

References

• J. S. Jones, M. S. BhaFa, and D. M. Tullsen, "Hoard: A scalable memory allocator for
mulFthreaded applicaFons," ACM TransacFons on Computer Systems (TOCS), vol. 20,
no. 1, pp. 1-15, 2002.

• M. J. Freedman and S. G. Zeldovich, "The effect of memory allocators on parallelism
in mulF-core systems," Proceedings of the 5th ACM SIGPLAN Symposium on Memory
Management (SAMOS), 2014.

• G. J. W. Gable, S. B. Miller, and P. R. D. King, "OpFmizing memory management in
mulFthreaded applicaFons: The importance of locality," Concurrency and
ComputaFon: PracFce and Experience, vol. 21, no. 7, pp. 893-914, 2009.

• P. J. Lee, M. S. BhaFa, and W. D. Young, "Reducing fragmentaFon and contenFon in
mulFthreaded systems through hierarchical memory allocaFon," ACM TransacFons
on Computer Systems (TOCS), vol. 32, no. 2, pp. 1-27, 2014.

• B. Bigler, S. Allan, and R. OldehoeU. Parallel dynamic storage allocaFon. Interna7onal
Conference on Parallel Processing, pages 272–275, 1985.

• T. Johnson. A concurrent fast-fits memory manager. Technical Report TR91-009,
University of Florida, Department of CIS, 1991.

• T. Johnson and T. Davis. Space efficient parallel buddy memory management.
Technical Report TR92-008, University of Florida, Department of CIS, 1992.

• A. K. Iyengar. Dynamic Storage Alloca7on on a Mul7processor. PhD thesis, MIT, 1992.
MIT Laboratory for Computer Science Technical Report MIT/LCS/TR–560.

• A. K. Iyengar. Parallel dynamic storage allocaFon algorithms. In FiLh IEEE Symposium
on Parallel and Distributed Processing. IEEE Press, 1993.

• R. D. Blumofe and C. E. Leiserson. Scheduling mulFthreaded computaFons by work
stealing. In Proceedings of the 35th Annual Symposium on Founda7ons of Computer
Science (FOCS), pages 356–368, Santa Fe, New Mexico, Nov. 1994.

• P. Larson and M. Krishnan. Memory allocaFon for long-running server applicaFons. In
ISMM, Vancouver, B.C., Canada, 1998.

• P. E. McKenney and J. Slingwine. Efficient kernel memory allocaFon on shared-
memory mulFprocessor. In USENIX AssociaFon, editor, Proceedings of the Winter
1993 USENIX Conference: January 25–29, 1993, San Diego, California, USA, pages
295–305, Berkeley, CA, USA, Winter 1993. USENIX.

