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Abstract 
 
The end of Moore’s Law necessitates the development of innovaFve soluFons to augment 
the performance of applicaFons rather than aHempFng to pack more transistors on a chip 
and/or increasing the CPU frequency. In this direcFon, MulFcore and MulFprocessor 
systems are now ubiquitous and are an ideal candidate to improve performance as they 
enable the execuFon of parallel, mulFthreaded programs. However, these parallel 
applicaFons are oUen inhibited by the memory allocator which can negaFvely throHle 
performance and scalability. Moreover, the memory allocator can also introduce other 
issues such as false sharing and fragmentaFon which can be considerable boHlenecks to 
performance. This project introduces a scalable memory allocator that can be used in 
conjuncFon with these parallel applicaFons (even those developed with OpenMP). It 
introduces the concept of per thread heaps with memory ownership that can scale 
efficiently while almost eliminaFng false sharing and minimizing fragmentaFon. The 
generated results for the developed OpenMP benchmark programs denote substanFal 
promise with the proposed and implemented memory allocator exhibiFng considerable 
improvements in Scalability, False Sharing avoidance and low FragmentaFon as compared to 
the Malloc and Hoard memory allocators. 
 
Introduc@on 
 
Moore's Law which stated that the number of transistors on a microchip doubles every 18 
months—has slowed down significantly. For decades, Moore's Law drove the advancement 
of compuFng power, allowing for exponenFal gains in performance simply by making 
transistors smaller and increasing their number. However, as physical and economic 
constraints make it increasingly difficult to further shrink transistors, the emphasis in 
compuFng has shiUed. 
 
Rather than relying on tradiFonal methods of increasing clock speeds or transistor density, 
innovaFve soluFons are now required to augment performance. These soluFons are no 
longer just about raw hardware improvements; they also need to focus on opFmizing 
soUware systems to fully leverage the available hardware. This has led to a marked shiU 
towards parallel compuFng—a paradigm that enables mulFple tasks to be executed 



simultaneously. The transiFon from single-core to mulFcore and mulFprocessor systems has 
been at the forefront of this shiU. These systems enable the simultaneous execuFon of 
mulFple threads or processes, allowing programs to handle more computaFons in parallel, 
which can result in significant performance improvements, especially for computaFonally 
intensive applicaFons. 
 
MulFcore and mulFprocessor systems, which consist of mulFple processor cores or mulFple 
processors working in tandem, have become ubiquitous in modern compuFng, from 
smartphones and laptops to large-scale server farms and high-performance compuFng 
clusters. These systems are ideal candidates for improving performance, as they allow for 
greater parallelism. In theory, this parallelism should allow applicaFons to scale beHer with 
the number of cores, enabling faster execuFon Fmes for mulFthreaded programs. Programs 
that can be divided into smaller tasks that run concurrently as parallel threads can 
potenFally achieve linear or near-linear speedup with the addiFon of more cores, resulFng 
in massive improvements in processing speed and efficiency. 
 
However, the effecFve use of mulFcore and mulFprocessor systems is not as straigheorward 
as simply adding more cores. While the hardware can support parallel execuFon, the 
soUware—specifically, the memory allocator—oUen becomes a boHleneck in achieving 
opFmal performance. A memory allocator is responsible for managing the allocaFon and 
deallocaFon of memory during program execuFon. In mulFcore environments, memory 
allocators can throHle performance and scalability for several reasons. 
 
In a mulFthreaded environment, mulFple threads may aHempt to allocate and free memory 
simultaneously, leading to the need for synchronizaFon mechanisms such as locks. If these 
locks are not efficiently managed, they can result in significant contenFon and serializaFon 
of memory operaFons, which ulFmately reduces the parallelism that the system can exploit. 
 
Another important challenge related to memory allocaFon in parallel systems is false 
sharing. False sharing occurs when mulFple threads access different variables that are 
located on the same cache line. When mulFple threads modify variables that are located on 
the same cache line, the CPU cache becomes inefficient because each thread’s modificaFon 
forces the cache line to be invalidated and reloaded from memory (in other words, the 
cache coherency protocol kicks in), resulFng in a significant performance penalty. 
 
AddiFonally, many tradiFonal memory allocators are not opFmized to handle fragmentaFon 
which can degrade system performance over Fme, especially in long-running applicaFons or 
applicaFons with dynamic memory allocaFon paHerns, as the allocator has to work harder 
to find conFguous free blocks or to recombine fragmented blocks of memory. 
 
This project proposed the development of a scalable memory allocator that aHempts to 
solve some of the above problems that are inherent to memory allocators, especially in a 
mulFthreaded environment. It introduces the concept of per thread heaps where every 
thread is allocated a dedicated heap with a certain number of iniFal pages. This greatly aids 
in scalability as different threads can be serviced by their private heaps without affecFng the 
other heaps. A memory allocaFon request originaFng from a certain thread is only serviced 
by the heap corresponding to that thread. On the other hand, a memory free operaFon can 



aHempt to free the memory block allocated by a different thread. The proposed allocator 
introduces the concept of ownership where the freed memory block is always returned to 
the original thread’s heap. This reduces false sharing as it ensures that memory blocks of 
different threads are not present in the same heap, hence, not on the same cache line. 
Moreover, since the allocaFon of memory is in terms of page sizes, which happen to be 
cache aligned, it can be guaranteed that the memory blocks of two different threads will 
never fall in the same page and hence will never fall on the same cache line. This pracFcally 
eliminates false sharing across threads. Further, the memory allocator acFvely merges free 
blocks and unmaps freed pages back to the OperaFng System, which helps in reducing 
fragmentaFon. 
 
Literature Survey 
 
There has been considerable work in the direcFon of developing different memory 
allocators. The default and well-known memory allocator that is popularly used is malloc 
and free. The C Standard Library introduced malloc and free as part of dynamic memory 
management. These funcFons were derived from early systems and are now integral to 
memory allocaFon on systems that do not rely on automaFc garbage collecFon. The malloc 
funcFon allocates a specified number of bytes of memory and returns a pointer to the first 
byte of the allocated block. If the allocaFon is successful, the pointer can be used to access 
the memory. If allocaFon fails, malloc returns NULL. The free funcFon deallocates memory 
previously allocated by malloc, returning it to the system. This prevents memory leaks by 
ensuring that the memory is no longer in use. 
 
In terms of Scalable Memory Allocators, the Hoard Scalable Memory Allocator is a state-of-
the-art allocator for mulFthreaded applicaFons. The Hoard allocator addresses the various 
challenges inherent to scalable memory allocaFon such as Lock contenFon, Scalability, 
fragmentaFon, concurrency, etc. by employing a scalable approach that minimizes lock 
contenFon and reduces fragmentaFon in mulFthreaded environments. The paper proposes 
several techniques that differenFate Hoard from exisFng memory allocators, as listed below: 

• Hoard uses thread-local storage to reduce contenFon. Each thread maintains its own 
local memory pool, minimizing the need to access global memory. This technique 
allows threads to allocate and deallocate memory from their own pools, reducing the 
frequency of synchronizaFon operaFons across threads. 

• The Hoard allocator minimizes lock contenFon by using fine-grained locking and local 
pools. Threads allocate memory from their local pool, and when a thread runs out of 
space in its local pool, it may access a global pool. The global pool is protected by a 
lock, but contenFon is minimized because it is rarely accessed by threads compared 
to other allocators that heavily rely on global locks. 

• Hoard employs a hierarchical memory pooling approach, where different pool sizes 
are dynamically allocated based on the size of the requested memory block. This 
helps manage fragmentaFon by ensuring that memory is grouped in sizes that are 
appropriate for the applicaFon’s allocaFon paHerns. 

• Hoard includes an efficient strategy for managing both small and large memory 
blocks. Small blocks are allocated from thread-local pools, while larger blocks are 
handled by the global pool. This technique opFmizes the allocator for both fine-



grained memory requests (common in many small objects) and coarse-grained 
requests (for large data structures). 

• The Hoard allocator aims to minimize fragmentaFon by using efficient memory block 
management techniques. The hierarchical pooling structure and the use of localized 
memory pools help reduce both external and internal fragmentaFon. 

• Hoard uses a slab allocator design for certain memory management tasks. This 
approach improves performance by keeping a pre-allocated set of memory blocks 
(slabs) of a given size, reducing the need for frequent allocaFon and deallocaFon. It 
also reduces fragmentaFon by grouping similar-sized allocaFons. 
 

Taxonomy of Memory Allocators 
 
In general, the different memory allocator algorithms in Literature can be categorized into 
the following categories: 

• Serial Single Heap: Here, only a single processor may access the heap at any point in 
Fme as the global heap is typically protected through a single lock which serializes 
memory operaFons. This leads to considerable lock contenFon in mulFthreaded 
applicaFons which affects scalability and hence are not very suitable for 
mulFthreaded applicaFons. As it involves a single heap, they acFvely induce false 
sharing which can be a significant boHleneck for performance. Some known Serial 
single Heap Allocators are the default allocators in Solaris and Windows NT/2000. 

• Concurrent Single Heap: Here, the heap is implemented as a concurrent data 
structure such as a concurrent B-tree and hence many processors can simultaneously 
operate on one shared heap. As it involves a single heap, they acFvely induce false 
sharing which can be a significant boHleneck for performance. The concurrent data 
structure also requires the use of many locks and atomic update operaFons which 
can end up being quite expensive.  

• Pure Private Heaps: Here, every processor has its own per-processor heap that it 
uses to service the memory operaFons which can be beHer suited for scalability. This 
is purely private because every processor never accesses any other heap for any 
memory operaFon. Memory allocated by one thread can be freed by another thread. 
This freed memory is placed in the second thread’s heap thereby passively inducing 
false sharing. Pure private heaps are used in STL’s pthread_alloc and Cilk. 

• Private Heaps with Ownership: Here, every processor has its own heap but the 
memory is returned to the owner processor’s heap on a free operaFon thereby 
reducing false sharing scenarios while being scalable. MT-malloc, Ptmalloc and 
LKmalloc are some of the memory allocators that use private heaps with ownership. 
The proposed allocator implemented as part of this project, namely, My_mem_alloc 
falls under this category of having private heaps with ownership. It aHempts to 
scalably support mulFthreaded applicaFons by reducing false sharing and 
fragmentaFon. 

• Private Heaps with Thresholds: Here, every processor has its own heap which can 
hold a limited amount of free memory. When a per-processor heap has more than a 
certain amount of free memory (the threshold), some porFon of the free memory is 
moved to a shared heap. They can passively induce false sharing as pieces of the 
same cache line can be recycled. As long as the amount of free memory does not 
exceed the threshold, pieces of the same cache line spread across processors will be 



repeatedly re-used to saFsfy memory requests, resulFng in false sharing scenarios. 
DYNIX kernel allocator and Hoard are some of the Memory allocators that employ 
private heaps with thresholds. 
 
 

Proposed Idea 
 
As part of the research, experimentaFon and development of the Scalable Memory Allocator 
for OpenMP Programs, 3 different incremental versions of the Memory Allocator were 
developed and experimented with, which are detailed as follows: 
 

1. SequenJal Memory Allocator (Single-threaded only implementaJon) 
 

This was the very first version of the Memory Allocator developed which supported 
only single-threaded client programs. The main objecFve of this allocator was to 
develop and finalize some of the core ideas and features inherent to the Memory 
Allocator, listed as follows: 

 
a. A Book Keeping Node to maintain the metadata informaFon of the memory 

block it is associated with, like the size of the memory block, and whether it is 
free or allocated. It also keeps the pointers to the next and previous book 
keeping nodes and hence is implemented as a doubly linked list of book 
keeping nodes. 

b. A Free List node to maintain informaFon of the memory blocks that are not 
currently allocated and hence can be used to service a future memory 
allocaFon request. These nodes contain pointers to the book keeping nodes 
of the free memory blocks. They also contain pointers to the previous and 
next free list nodes, hence the free list is a doubly linked list of free list nodes. 

c. One important consideraFon was regarding the Alignment of the memory 
blocks. It was made sure that any memory request is first aligned to the 
nearest word boundary to facilitate efficient load/store operaFons for this 
memory block. Further, it was decided that every request to the operaFng 
system for memory (an mmap call) will be in terms of page sizes alone. This 
was done keeping in mind that an mmap call is a system call which can have 
substanFal latency. Hence, rather than making repeated mmap system calls 
for smaller sized memory, it would be prudent to get a larger sized memory 
block which can then be internally managed to service future memory 
requests. Therefore, on a memory allocaFon request, the requested size is 
aligned to the nearest page boundary and then an mmap call is made for the 
deduced number of pages. 

d. On a Memory AllocaJon request, the requested size is first aligned to the 
word boundary as explained above. The free list is then searched through to 
find a free block (if, any) that can service this request. The best fit algorithm is 
implemented to find such a free block; therefore, it searches for the smallest 
free memory block that is large enough to service the given memory request. 

i. If such a memory block is found, a split operaFon is performed to split 
the block into 2 blocks, one of the requested size, and another with 



the remaining memory (if the remaining memory is not sufficiently 
large, that is it is smaller than the size of the book keeping node, the 
split operaFon is not performed). The newly split block is added to the 
front of the free list keeping in mind locality and the allocated free 
block is removed from the free list. The book keeping nodes are 
created and updated accordingly. 

ii. If no such memory block is found in the free list, then there is a 
requirement to allocate memory by requesFng the OperaFng System. 
This is done through an mmap call. Here, the requested size is aligned 
to the nearest page boundary as explained above and the newly 
deduced size (which will be a mulFple of the page size) is requested as 
part of the mmap system call. Once this memory is mapped, a similar 
split operaFon is performed as before (if required) resulFng in a block 
to address the request and a remaining memory block. The free list 
and the book keeping nodes are updated accordingly. 

e. On a Memory Free Request, certain condiFon checks are performed first, 
such as, if the passed pointer is NULL, or if the memory block has already 
been freed. If the above condiFons are not met, the actual free operaFon is 
performed. The previous and next memory blocks of the memory block to be 
freed is checked to determine if they are free as well which would allow them 
to be merged with the current block. This merge operaFon handles a variety 
of cases and performs the required updates to the book keeping nodes and 
the free list. Once the merge operaFon is done, it is checked to see if the 
memory block to be freed exceeds the page size and is such that the starFng 
memory address of this block aligns with a page boundary. If these condiFons 
are met, this memory block can be unmapped using the unmap system call. 
First, a split operaFon is performed to split any residual parts of the memory 
block aUer dividing the size by the page size (as the unmap operaFon is done 
only in terms of pages). Then, the unmap system call is made to unmap the 
deduced number of pages. 

f. Further, funcFons to display the free list and the list of the book keeping 
nodes along with their memory mapping were developed to aid the 
development, experimentaFon and verificaFon of the various features 
discussed above. 

g. With this version of the memory allocator, it was possible to develop, 
experiment and verify some of the fundamental ideas inherent to the 
memory allocator being designed. These ideas form the base for the future 
versions of the memory allocator. 
 

 
2. Concurrent Memory Allocator – Serial Single Heap 

 
The previous version of the memory allocator was such that it was completely 
sequenFal and could only support single threaded client applicaFons. The objecFve 
of this version of the allocator was to augment the previous version to support 
mulFthreaded client applicaFons. The fundamental ideas and features of this 
version, a concurrent memory allocator is summarized below: 



a. The core features of book keeping node, free list, alignment to word and page 
boundaries, search through best fit algorithm, split and merge operaFons, 
map and unmap system calls remain similar to the previous version of the 
memory allocator described above. 

b. The significant modificaFon for this version of the memory allocator is the 
introducFon of a mutex variable to lock and unlock access to the data 
structures and operaFons of the single heap under consideraFon. Thereby, 
this mutex variable provides mutual exclusion to support mulFthreaded 
applicaFons performing parallel memory allocaFon and free operaFons. 

c. On a memory allocaFon request, a lock operaFon to the above mutex is 
performed. The rest of the operaFons crucial to a memory allocaFon 
operaFon like finding a free block, splimng free blocks, map system call, etc. 
are performed only aUer this lock is acquired. The lock is released aUer the 
required operaFons are performed. 

d. Similarly, on a memory free request, a lock operaFon to the above mutex is 
performed. The rest of the operaFons crucial to a memory free operaFon like 
merging free blocks, unmap system call, etc. are performed only aUer this 
lock is acquired. The lock is released aUer the required operaFons are 
performed. 

e. Care was taken to handle the locking for various cases such as acquiring the 
lock only if required, for example, if the memory allocaFon request was for a 
size lesser than 0, it can directly return, or if the free request was for a NULL 
pointer, it can directly return. In such cases, the lock was not even acquired. 
In certain other cases, care was also taken to unlock the mutex before 
returning from the funcFon, such as aUer finding a block in the free list which 
is a condiFonal exit or aUer deducing that the block to be freed is already 
freed. The base case of returning at the end of funcFons, aUer performing all 
the required operaFons was explicitly handled such that the lock to the 
mutex is released before returning from the funcFon. 

f. Therefore, the introducFon of the mutex and the uFlizaFon of its lock and 
unlock operaFons to provide concurrent access to a single heap, allows 
mulFthreaded applicaFons to perform memory allocaFon requests and 
memory free requests using this allocator. However, as the mutex lock 
prevents mulFple threads from accessing the heap simultaneously, at any 
given point of Fme, only a single thread can access the heap to service its 
memory allocaFon and free requests. Therefore, this version of the memory 
allocator serializes the memory allocaFon and free operaFons. 

g. With this version of the memory allocator, it was possible to support 
mulFthreaded applicaFons performing memory allocaFon and memory free 
requests. Specifically, this version allows for concurrent memory allocaFon 
and free by different threads but not parallel memory allocaFon and free as 
the mutex serializes the access and operaFons to the single shared heap. 

h. It can be specifically noted that this version of the memory allocator uses a 
single shared heap to service the memory requests from different threads. 
This clearly is a boHleneck to performance and this was precisely the concern 
that was aHempted to be handled by the next incremental version of the 
memory allocator. 



 
3. Concurrent and Scalable Memory Allocator – Per thread Heap 

 
As discussed above, although the previous version of the memory allocator supports 
mulFthreaded applicaFons, it serializes the memory operaFons due to the controlled 
access to the single shared heap. As part of this incremental version of the memory 
allocator, various ideas and features were implemented to work around this and 
beHer support concurrent, scalable and parallel memory allocaFon. These are 
summarized as below: 

a. The core features of book keeping node, free list, alignment to word and page 
boundaries, search through best fit algorithm, split and merge operaFons, 
map and unmap system calls remain similar to the previous versions of the 
memory allocator described above. 

b. The significant difference is the introducFon of a heap per thread rather than 
the single global heap in the previous version of the memory allocator. This 
heap is dedicated to a single thread and maintains a private linked list of book 
keeping nodes, private free list and a mutex to control access to this per 
thread heap. AddiFonally, other required informaFon like the number of 
pages allocated to this per thread heap, the last memory mapped address are 
maintained to support the various operaFons on the per thread heap. 
Therefore, there is an array of per thread heaps where every heap 
corresponds to a single thread and services the memory requests originaFng 
from that thread. 

c. It was also decided that each of these heaps will have some iniJal free 
memory mapped to each of them. The implemented version dedicates 2 
pages of iniFal free memory to every per thread heap (this can be configured 
and experimented with based on the requirements of different applicaFons). 
This iniFal free memory is mapped as part of an iniFalizaFon call. This 
iniFalizaFon is performed only once, as part of the first memory allocaFon 
request received by the memory allocator. In order to safely and correctly 
support this, a mutex is used which provides mutual exclusion in relaFon to 
the read, and condiFonal modify operaFons performed during init. The init 
call iniFalizes and grounds the various fields of the per thread heap, maps 2 
pages of iniFal free memory to every per thread heap, updates the free list 
with this free memory block and updates the number of pages allocated to 
this per thread heap. 

d. On a memory allocaJon request, the thread number of the thread from 
which the request originated is deduced. Subsequently, the mutex 
corresponding to this thread’s heap is locked. Once the lock is acquired, the 
operaFons inherent to memory allocaFon are performed as before, such as, 
finding a free block through the best fit algorithm, mapping memory through 
mmap system call, split operaFon if required, etc. Finally, once the required 
memory is allocated, the mutex of this thread’s heap is unlocked. 

e. Similarly, on a memory free request, the thread number of the thread from 
which the request originated is deduced. It is to be noted here that there is 
one specific case that needs to be handled in relaFon to memory free. As the 
programmer is dynamically allocaFng memory on the heap, the logical view 



of the programmer is that every thread can access this dynamically allocated 
memory, irrespecFve of the thread that allocated it. Therefore, specifically, in 
regards to the memory allocator, any thread can free a dynamically allocated 
memory. This had to be explicitly taken care of by the memory free operaFon 
in this version of the memory allocator. First, the current thread’s heap is 
searched through to verify if it contains the memory to be freed. As before, 
this is done aUer acquiring the mutex for this thread’s heap. If not found, this 
mutex is first released and the rest of the per thread heaps are searched 
through to determine where the memory block to be freed is present. As 
before, this is done aUer acquiring the lock to the mutex of the per thread 
heap under consideraFon. Once the memory block is found on a parFcular 
per thread heap, the operaFons inherent to the memory free are performed 
as before, such as, merging free blocks, splimng and unmapping if required, 
etc. One explicit condiFon taken care of is checking the number of mapped 
pages against the iniFal mapped pages. The unmap operaFon is done only if 
aUer unmapping, the remaining pages is sFll greater than or equal to the 
iniFal number of pages (here, 2). This way, it is guaranteed that every per 
thread heap has at least 2 pages mapped to it at any point in Fme. 

f. The design of a private heap per thread was due to several reasons. One of 
them was to aid speed and scalability as every thread has a dedicated heap 
which can be used to service its memory requests without interfering with 
the other threads or their heaps. The lock contenFon is also significantly 
reduced as a thread only aHempts to acquire the mutex for its per thread 
heap apart from the free operaFon check detailed above. 

g. The design also considered various aspects related to False Sharing, an issue 
inherent to and very prominent in memory allocaFon for mulFthreaded 
applicaFons. As the memory mapping for the per thread heaps is always done 
in terms of pages, it can be guaranteed that no two per thread heaps will 
have memory allocated on the same page. More specifically, as the pages are 
cache aligned, it can also be guaranteed that no two per thread heaps will 
have memory allocated on the same cache line. This significantly reduces and 
pracFcally eliminates false sharing across threads. Moreover, when a memory 
block is freed, the free block is maintained in the original thread itself, rather 
than moving it to the thread freeing the block. This reduces false sharing as 
the movement of free blocks could make it such that a free block moved to a 
new thread is adjacent to a memory block of the original thread, giving rise to 
false sharing scenarios. 

h. AddiFonally, the design considered various aspects related to fragmentaFon 
and aHempted to keep the fragmentaFon as low as possible. The 
maintenance of a free list combined with the best fit algorithm search 
through the free list helps to allocate memory from previously free blocks 
rather than making a new mmap call. The merge operaFon also significantly 
aids low fragmentaFon by merging adjacent free blocks. Further, the unmap 
operaFon is performed based on the remaining number of pages and acFvely 
returns memory to the OperaFng System. 



i. This 3rd version of the memory allocator with per thread heaps is the one 
used for all experiments performed and for generaFng all the required 
results. 

j. This 3rd version of the memory allocator is referred to as “My_mem_alloc”. 
 
 
Note: Each of the above 3 versions implement and expose the following funcFons: 

1. void* my_mem_alloc(size_t size): This is the funcFon to allocate memory of the 
menFoned size 

2. void my_mem_free(void* ptr): This is the funcFon to free memory pointed by the 
menFoned pointer 

3. void display_free_list(): This is a helper funcFon to display the current contents of 
the free list 

4. void display_mem_map(): This is a helper funcFon to display the current memory 
mapping, specifically the book keeping nodes and their contents 
 
 

Experimental Setup 
 
All the experiments were performed and the results were gathered on the crunchy2 CIMS 
machine which has the following configuraFon: 

 
Architecture x86_64 
Number of CPUs 64 
Number of Sockets 4 
Number of Cores per Socket 8 
Number of Threads per Core 2 
L1d Cache 1 MiB (64 instances) 
L1i Cache 2 MiB (32 instances) 
L2 Cache 64 MiB (32 instances) 
L3 Cache 48 MiB (8 instances) 
Page Size 4K bytes 
Cache Alignment 64 bytes 
L1d Cache Line Size 64 bytes 

 
In order to verify the implemented funcFonaliFes and features of the developed memory 
allocator (the 3 versions explained above), sanity clients for the 3 versions were designed. 
This performs different Memory AllocaFon and Memory Free requests and checks for 
various cases. The sanity client is named as client_mem_alloc.cpp and is placed within the 
folder of each of the implemented versions of memory allocator. The sanity client for the 
third finalized version is an OpenMP program performing memory allocaFon and free 
requests from different threads. A makefile is also provided within the folder for each of 
these versions. 
 
Further details regarding the Source Code folder hierarchy, Benchmark programs folder 
hierarchy, steps and commands to execute the different versions and the benchmarks are 
detailed in the aHached readme.txt file. 



 
Experiments and Analysis: 
 
In order to compare the different memory allocators, namely Malloc, Hoard and 
My_mem_alloc, various benchmark programs were developed as explained below: 
 

1. Speed: In order to compare the different memory allocators for speed, single 
threaded and mulFthreaded benchmark programs were developed under the 
following categories: 

a. No Malloc or free: This benchmark program does not perform any malloc or 
free operaFon and just performs a few basic arithmeFc operaFons within a 
loop. The single threaded version uses a single thread whereas the 
mulFthreaded version uses 8 threads simultaneously performing these 
operaFons. 

b. CPU bound: This benchmark program performs significantly greater number 
of arithmeFc operaFons as compared to memory allocaFon and memory free 
operaFons, hence is CPU bound. Each thread dynamically allocates an integer 
array of 100 elements, performs various arithmeFc operaFons and then 
finally frees the integer array. The single threaded version uses a single thread 
whereas the mulFthreaded version uses 8 threads simultaneously performing 
these operaFons. 

c. Memory bound: This benchmark program performs a substanFal number of 
memory allocaFon and memory free operaFons, hence is Memory bound. 
Each thread allocates a double pointer array of large size. Each element of 
this double pointer array is iniFalized in a loop with a dynamically allocated 
double array of large size. A second loop is used to free the double arrays and 
then finally the double pointer array is freed. The single threaded version 
uses a single thread whereas the mulFthreaded version uses 8 threads 
simultaneously performing these operaFons. 
 

2. Scalability: The scalability benchmark program is developed such that every thread 
allocates 100000/t (where ‘t’ is the number of threads) 12-byte objects (3 integers) 
and then frees the allocated objects. This benchmark program is then executed for 
different number of threads, ranging from 1 to 14. 
 

3. False Sharing Avoidance: With regards to False Sharing, two benchmark programs 
were developed for the following categories: 

a. AcJve False Sharing: In this benchmark program, every thread allocates 8 
bytes (2 integer) objects, performs a large number of write operaFons on 
these objects and then frees the objects. This benchmark program uses 8 
threads. Since these 8 threads simultaneously allocate 8 bytes, all the 
requested memory (8*8 = 64 bytes) can fit into a single cache line of 64 bytes. 
Therefore, this benchmark program verifies the acFve false sharing scenario. 

b. Passive False Sharing: In this benchmark program, the sequenFal part of the 
program allocates 8 integer objects which are then handed over to each of 
the 8 threads. Every thread frees one of the integer objects, then allocates a 
new integer object, performs a large number of write operaFons on it and 



then finally frees the integer object. The nature of this program is such that it 
can have false sharing at the beginning given that the 8 integer objects can be 
conFguous and are part of the same cache line. Once these objects are freed, 
the memory allocator can passively induce false sharing for future mallocs if 
they are allocated using the memory freed by these objects, thereby falling in 
the same cache line as the objects of other threads. Therefore, this 
benchmark program verifies the passive false sharing scenario. 
 

4. FragmentaJon: The FragmentaFon benchmark program is developed such that every 
thread allocates an integer pointer array of large size, each pointer is then iniFalized 
to a dynamically allocated integer array of large size (say, size ‘s1’). Then every 
alternate element of the integer pointer array is freed, aUer which a new integer 
pointer array is allocated, where every pointer is then iniFalized to an integer array of 
the same size as before – ‘s1’. Therefore, half of these new memory requests can be 
saFsfied by the memory freed from the previous array. If not handled properly, the 
memory allocator can map and allocate fresh memory rather than reusing these 
freed blocks, leading to high fragmentaFon. Therefore, this benchmark program 
verifies the fragmentaFon scenario for the different memory allocators. 

 
• All the benchmark programs are provided under appropriately named folders under 

the comparison_tes7ng folder hierarchy. 
• The execuFon Fme calculaFon for the different programs was performed using the 

omp_get_w7me() uFlity. 
 

 
Details regarding running the benchmark programs for the different memory allocators: 
• The benchmark programs are linked with the C standard library (cstdlib) to invoke the 

default malloc and free calls. 
• For the Hoard memory allocator, the source code for Hoard is first downloaded from 

the Github Repository (hHps://github.com/emeryberger/Hoard) which is then built 
to generate the libhoard.so shared object file. This is then linked with the object file 
of the benchmark program to generate the required executable. 

• For the My_mem_alloc version of the memory allocator, the custom_mem_alloc.h 
header file provided in the 3rd version (Per thread Heaps) is used to provide the 
required interface. The custom_mem_alloc.o generated for the Per thread Heaps 
version is linked with the benchmark program to generate the required executable. 

 
Results 
 
Malloc, Hoard and My_mem_alloc memory allocators were compared based on the 
following metrics using the benchmarks detailed above: 
 

1. Speed: 
 
In order to compare the different memory allocators for speed, the execuFon Fme in 
seconds was used as the metric.  
 



The figure below summarizes the speed comparison of the memory allocators for the 
single threaded benchmarks: 
 

 
 
From the above figure it can be seen that the execuFon Fmes of the different 
memory allocators are very similar for the No_malloc_free and CPU_bound 
benchmarks, which is the expected scenario as these benchmarks do not have a 
significant number of memory operaFons. For the Mem_bound benchmark, it can be 
seen that execuFon Fmes are very similar for Malloc and Hoard whereas the 
execuFon Fme of My_mem_alloc is relaFvely higher. This increased execuFon Fme 
for My_mem_alloc comes from the addiFonal operaFons of maintaining a thread per 
heap, mapping and maintaining some iniFal number of pages to each heap, 
performing a best fit algorithm search to find the free block and merging free blocks. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



The figure below summarizes the speed comparison of the memory allocators for the 
mulFthreaded benchmarks, that were executed with 8 threads: 
 

 
 
From the above figure it can be seen that the execuFon Fmes of the different 
memory allocators are very similar for the No_malloc_free and CPU_bound 
benchmarks, which is the expected scenario as these benchmarks do not have a 
significant number of memory operaFons. For the Mem_bound benchmark, it can be 
seen that execuFon Fme is the least for Hoard, second least is for Malloc and finally 
the highest is for My_mem_alloc denoFng that Hoard exhibits good performance in 
terms of execuFon Fme for Memory Bound benchmarks. The increased execuFon 
Fme for My_mem_alloc comes from the addiFonal operaFons of maintaining a 
thread per heap, mapping and maintaining some iniFal number of pages to each 
heap, performing a best fit algorithm search to find the free block and merging free 
blocks. 
 

2. Scalability: 
 
In order to compare the different memory allocators for scalability, the calculated 
speedup in relaFon to one thread [Speedup for n threads = (ExecuFon Fme for 1 
thread)/(ExecuFon Fme for n threads)] was used as the metric. 
 
 
 
 
 



The figure below summarizes the scalability comparison of the memory allocators for 
the scalability benchmarks: 
 

 
 
From the figure above, it can be seen that the speedup increases for the 
My_mem_alloc memory allocator with the increase in the number of threads. On the 
other hand, the speedup for the malloc and hoard memory allocators increases very 
negligibly with the increase in the number of threads. A general rule of thumb is that 
as the number of threads increases, the performance of the memory allocator must 
scale, ideally linearly, with the increase in the number of threads to ensure scalable 
applicaFon performance. Here, the speedup is the indicator for performance. 
Although the speedup increase for My_mem_alloc is not completely linear (in fact it 
is beHer than linear speedup in most of the cases), the speedup increase seen with 
the increase in the number of threads in the above graph denotes that it is the most 
scalable memory allocator, quite considerably as compared to the Malloc and Hoard 
Memory Allocators. This could be due to the fact that even with the increased 
number of threads, every thread sFll has access to a private per thread heap to 
service the memory requests. As these per thread heaps are logically independent, 
they can beHer service the memory requests simultaneously coming from the 
different parallel threads, even with an increase in the number of threads. 
 

3. False Sharing Avoidance: 
 
In order to compare the different memory allocators for false sharing avoidance, the 
execuFon Fme in seconds was used as the metric. 
 
 
 
 



The figure below summarizes the false sharing comparison of the memory allocators 
for the false sharing benchmarks which were executed with 8 threads: 
 

 
 
From the above figure, it can be seen that the My_mem_alloc memory allocator has 
the best performance (execuFon Fme) for both the AcFve False Sharing and Passive 
False Sharing benchmarks. In general, a memory allocator should not introduce false 
sharing of cache lines in which different threads inadvertently share data on the 
same cache line. As the design of the My_mem_alloc memory allocator is such that 
there are private heaps per thread from which the memory requests generated from 
that thread are serviced and the fact that the memory is mapped only in terms of 
pages (which are cache aligned), it ensures that memory on two different per thread 
heaps are never in the same page and hence never in the same cache line. Therefore, 
the My_mem_alloc memory allocator pracFcally eliminates false sharing which is 
also corroborated by its performance for the false sharing benchmarks. On the other 
hand, the other two memory allocators, namely Malloc and Hoard have comparable 
performance to the My_mem_alloc memory allocator for the AcFve False Sharing 
benchmark but a relaFvely worse performance for the Passive False Sharing 
benchmark, denoFng that Malloc and Hoard do not completely avoid false sharing, 
especially for the Passively induced False Sharing scenario. 
 
 

4. FragmentaJon: 
 
In order to compare the different memory allocators for fragmentaFon, the 
fragmentaFon raFo was used as the metric. The fragmentaFon raFo can be defined 
as the maximum amount of memory allocated from the operaFng system divided by 
the maximum amount of memory required by the applicaFon. The maximum 
amount of memory required by the applicaFon can be deduced by analyzing the 



benchmark program. On the other hand, the maximum amount of memory allocated 
from the operaFng system cannot be deduced very easily. This is more of an issue 
considering how it is not possible to tap into the implementaFons of malloc and 
hoard and add addiFonal markers to calculate this informaFon. As the comparison 
needs to be performed uniformly across the memory allocators it was decided to use 
a way of esFmaFng this number. The “cat /proc/<pid>/maps | grep heap” linux 
command gives the memory range for the heap area of the process under 
consideraFon (Here pid is the process id of the executable under consideraFon which 
can be deduced from the “ps aux | grep <executable_name>” command). By adding 
an explicit sleep for a large number of seconds at the end of the program, the 
process can be guaranteed to be in execuFon and hence the range of the heap can 
be deduced as explained above. This range of heap (say, start-end) is then used to 
deduce the number of bytes by performing a simple subtracFon between end and 
start. This is used to esFmate the maximum amount of memory allocated from the 
operaFng system which is then used to calculate the fragmentaFon raFo. 
 
The figure below summarizes the fragmentaFon comparison of the memory 
allocators for the fragmentaFon benchmarks which were executed with 8 threads: 
 
 

 
 
From the above graph, it can be seen that the My_mem_alloc memory allocator has 
a very low fragmentaFon raFo as compared to the malloc and hoard memory 
allocators denoFng that the My_mem_alloc memory allocator is such that it aids low 
fragmentaFon. This can be due to the fact that every thread has a private heap to 
service the memory requests where the free blocks are searched through in a best fit 
manner; the merge free block operaFon which merges adjacent free blocks (this can 
be crucial in reducing fragmentaFon) and the unmap operaFon which acFvely 
releases mapped memory to the operaFng system when memory objects are freed. 



Conclusion 
 

• This project introduced a scalable memory allocator that uses the concept of per-
thread heaps with ownership where a heap is dedicated to a parFcular thread and is 
iniFalized with a certain number of pages. It implements various features such as 
splimng and merging of free blocks, best fit algorithm to find free blocks, unmapping 
of freed memory, returning free memory to the original thread, aligning memory 
block requests to word boundaries and aligning memory map requests to page sizes 
to eliminate false sharing. 

• It also introduces various benchmark programs under the categories of Speed, 
Scalability, False Sharing Avoidance and FragmentaFon which are used to compare 
and contrast the proposed memory allocator (My_mem_alloc) with the Malloc and 
Hoard memory allocators. The generated results are promising and show that the 
proposed memory allocator (My_mem_alloc) exhibits beHer results especially for 
Scalability, False Sharing avoidance and Low FragmentaFon as compared to the 
Malloc and Hoard memory allocators. 

• AdmiHedly, there is substanFal scope for future work. One of the main drawbacks of 
the proposed memory allocator seems to be its speed in relaFon to the Malloc and 
Hoard memory allocators. This could be due to the nature of some of its inherent 
features like iniFalizing per thread heaps with some pages, merging of free blocks, 
best fit algorithm to find free blocks, unmapping freed blocks, etc. In this direcFon, 
aHempts could be made to improve the speed while keeping the other benefits 
intact, for example, experimenFng with other find free block algorithms like first fit, 
last fit; unmapping based on some memory usage staFsFcs, compacFon etc. 
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