
1

Report on

“Mini Compiler for Python”

Submitted in partial fulfillment of the requirements for Sem VI

Compiler Design Laboratory

Bachelor of Technology
in

Computer Science & Engineering

Submitted by:
Darshan D

Drishti Hoskote
Ameya Bhamare

PES1201801456
PES1201801283
PES1201800351

 Under the guidance of

Ms. Madhura V
Asst. Professor

PES University, Bengaluru

January – May 2021

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
FACULTY OF ENGINEERING

PES UNIVERSITY
(Established under Karnataka Act No. 16 of 2013)

100ft Ring Road, Bengaluru – 560 085, Karnataka, India

2

TABLE OF CONTENTS

Chapter No. Title Page No.

1. INTRODUCTION (Mini-Compiler is built for which language. Provide
sample input and output of your project)

03

2. ARCHITECTURE OF LANGUAGE:
● What all have you handled in terms of syntax and semantics for

the chosen language.

05

3. LITERATURE SURVEY (if any paper referred or link used) 07

4. CONTEXT FREE GRAMMAR (which you used to implement your
project)

07

5. DESIGN STRATEGY (used to implement the following)
● SYMBOL TABLE CREATION
● INTERMEDIATE CODE GENERATION
● CODE OPTIMIZATION
● ERROR HANDLING - strategies and solutions used in your

Mini-Compiler implementation (in its scanner, parser, semantic
analyzer, and code generator).

13

6. IMPLEMENTATION DETAILS (TOOL AND DATA STRUCTURES
USED in order to implement the following):

● SYMBOL TABLE CREATION
● INTERMEDIATE CODE GENERATION
● CODE OPTIMIZATION
● ERROR HANDLING - strategies and solutions used in your

Mini-Compiler implementation (in its scanner, parser, semantic
analyzer, and code generator).

● Provide instructions on how to build and run your program.

15

7. RESULTS and possible shortcomings of your Mini-Compiler 19

8. SNAPSHOTS (of different outputs) 19

9. CONCLUSIONS 30

10. FURTHER ENHANCEMENTS 30

11. REFERENCES/BIBLIOGRAPHY 31

3

INTRODUCTION

The Mini Compiler has been built for the Python Language.
The constructs handled for the python language are if, if-else and for.

Python is a high-level, interpreted, interactive and object-oriented scripting language.
Python is designed to be highly readable. It uses English keywords frequently
whereas other languages use punctuation, and it has fewer syntactic constructions
than other languages.It provides very high-level dynamic data types and supports
dynamic type checking.

A compiler is a program that translates a source program written in some high-level
programming language into machine code for some computer architecture. The
generated machine code can be later executed many times against different data
each time.

Sample Input :

test.py

b = 3
c = 5
a = b + c
d = b*5
f = a/6
q = a + (b - d) / f * 4

4

Sample Output:

Symbol table:

Intermediate Code:

5

Optimized Intermediate Code

ARCHITECTURE

In terms of the syntax and semantics, we have handled the following for the python
language:

● Single line and multi line comments are ignored by the lexical analyzer

● Blank lines are ignored by the lexical analyzer

● Import statements have been handled

● Syntax and semantic analysis has been handled to take care of the if, if-else,
if-elif-else conditional constructs and the looping construct - for.

● Support has been provided to handle the arithmetic operators like ‘+’, ‘-’, ‘*’, ‘/’
and ‘%’

● Support has been provided to handle the relational operators like ‘<’, ‘>’, ‘<=’,
‘>=’, ‘==’ and ‘!=’

6

● Support has been provided to handle the logical operators - ‘not’, ‘and’, ‘or’.

Notably the operators ‘and’ and ‘or’ have been implemented as short circuit
operators and the intermediate code generated supports the short circuit
functionality as well.

● Support has been provided to recognize keywords and return the appropriate
token. Some of the keywords handled includes the following exhaustive list:

○ import
○ True
○ False
○ not
○ and
○ or
○ if
○ else
○ elif
○ for
○ in

 Care has also been taken to ensure that keywords cannot be used as
identifiers. A syntax error is generated in such a scenario

● Support has been provided to handle the assignment operator - ‘=’

● Support has been provided to handle punctuators and separators like ‘;’, ‘:’, ‘,’,
‘[‘, ‘]’, ‘(‘, ‘)’

● Support has been provided to handle the range function with all its variations
possible

● Support has been provided to handle indentation by the use of tabs and
spaces. A stack has been used to handle indentation accurately and to
generate the Indent and Dedent tokens properly. Care has also been taken to
take care of specific cases like generation of required number of Dedent
tokens at the end of the file, generation of required number of Dedent tokens
when there is a decrease in indentation but there is no set of spaces or tabs
to match as such.

● Support has been provided to recognize identifiers properly. The length of the
identifiers has been limited to 79 characters for readability purposes as per
the conventions that python follows. If the length of an identifier is greater

7

than 79 characters, then an error message is displayed and the identifier is
truncated to the first 79 characters

● Support has been provided to handle numbers and strings accurately

● Support has also been provided to handle numbers written in the scientific
notation. In such cases the corresponding floating number is generated. For
example, 3.1415E+3 is converted to floating point number 3141.500000
where the default precision after the decimal point is 6 digits.

● Support has been provided to handle precedence and associativity of
operators as followed by the python language

LITERATURE SURVEY

● The official grammar as used by Python 3.9 version, provided in the official
python documentation: https://docs.python.org/3/reference/grammar.html

● A comprehensive introduction to YACC -
https://www.cs.ccu.edu.tw/~naiwei/cs5605/YaccBison.html

● More resources for YACC - https://silcnitc.github.io/yacc.html#yylex
● Python documentation:

https://docs.python.org/3/reference/expressions.html
● Information about Lexical analysis for Python as provided by the official

python documentation:
https://docs.python.org/3/reference/lexical_analysis.html#indentation

CONTEXT FREE GRAMMAR:

The following is the Context Free Grammar used to implement our project:

prog_start : input_file;

input_file : T_Newline input_file

 | statement input_file

 | {;}

;

statement : simple_statement

 | compound_statement

8

;

simple_statement : small_statement next_simple_statement;

next_simple_statement : T_Newline

 | T_semicolon T_Newline

 | T_semicolon small_statement next_simple_statement

;

small_statement : expr_statement

 | import_statement

;

import_statement : T_import T_identifier;

expr_statement : assignment_statement

 | or_test

;

assignment_statement : T_identifier T_assignment assignment_expr;

assignment_expr : or_test

 | T_list T_left_par T_right_par

 | T_left_sq_b T_right_sq_b

;

or_test : or_test T_or and_test

 | and_test

9

;

and_test : and_test T_and not_test

 | not_test

;

not_test : T_not not_test

 | comparison

;

comparison : comparison T_LT arith_exp

 | comparison T_GT arith_exp

 | comparison T_EQ arith_exp

 | comparison T_GTE arith_exp

 | comparison T_LTE arith_exp

 | comparison T_NEQ arith_exp

 | comparison T_in arith_exp

 | arith_exp

;

arith_exp : arith_exp T_plus arith_exp2

 | arith_exp T_minus arith_exp2

 | arith_exp2

;

arith_exp2 : arith_exp2 T_star factor

 | arith_exp2 T_divide factor

10

 | arith_exp2 T_modulus factor

 | factor

;

factor : T_plus factor

 | T_minus factor

 | term

;

term : T_identifier

 | constant

 | list_index

 | T_left_par or_test T_right_par

;

constant : T_number

 | T_string

 | T_True

 | T_False

;

list_index : T_identifier T_left_sq_b or_test T_right_sq_b;

compound_statement : if_statement

 | for_statement

;

11

if_statement : T_if test T_colon suite elif_statement optional_else;

test : or_test;

suite : simple_statement

 | T_Newline T_Indent suite1

;

suite_for : simple_statement

 | T_Newline T_Indent suite1

;

suite1 : statement T_Dedent

 | statement repeat_statement T_Dedent

;

repeat_statement : statement repeat_statement

 | statement

 | T_Newline repeat_statement

 | T_Newline

;

elif_statement : {;}

 | T_elif test T_colon suite elif_statement

;

12

optional_else : {;}

 | T_else T_colon suite

;

for_statement : T_for exprlist T_in testlist T_colon suite_for

;

exprlist : first_exprlist last_exprlist;

first_exprlist : T_identifier;

last_exprlist : {;}

 | T_comma

 | T_comma first_exprlist last_exprlist

;

testlist : range_fn;

range_fn : T_range T_left_par range_term T_right_par

 | T_range T_left_par range_term T_comma range_term T_right_par

 | T_range T_left_par range_term T_comma range_term T_comma

range_term T_right_par

;

range_term : T_identifier

13

 | T_number

 | list_index

;

DESIGN STRATEGY

● SYMBOL TABLE CREATION:

○ For every different scope value, a separate symbol table is created.
Thus we have a symbol table per scope

○ Everytime an identifier is encountered that falls under a particular
scope, the symbol table associated with that scope is accessed and a
new record for this identifier is created accordingly.

○ Similarly to retrieve values of identifiers on encountering them, the
symbol table corresponding to the scope is accessed and the value is
retrieved by accessing the record corresponding to this identifier.

● INTERMEDIATE CODE GENERATION:

○ Intermediate code generation has been implemented by associating
attributes with the non terminals used in the grammar rules.

○ Based on the grammar rule, the equivalent intermediate code is
generated by concatenating the different strings received from the
attributes. This is then propagated upwards through the attributes
associated with the non terminals in the grammar rules

○ In each of these action rules, records are inserted into the quadruple
data structure with appropriate information.

○ The symbol table is updated with the temporaries generated

● CODE OPTIMIZATION

○ The quadruple data structure created due to the generation of
intermediate code is taken as input for the optimization phase. This

14

phase performs the different optimizations and gives the resulting
quadruple data structure as the output.

○ The following code optimizations have been performed:

■ Constant folding

● Expressions that can be evaluated at compile time as the
arguments forming the expressions are constants, are
evaluated and the resulting value is assigned to the
appropriate variable.

● Algebraic identities are also constant folded by this
optimization. Algebraic identities are equations that are
always true regardless of the value assigned to the
variables

● Example for algebraic identity constant folding:
○ a + 0 = 0 + a = a

■ Constant propagation

● If the value of the variable is a constant that is known at

compile time, this value is propagated and substituted
whenever this variable is encountered.

● This is usually followed by constant folding

■ Common Subexpression Elimination

● An occurrence of an expression E is called a common
subexpression, if E is previously computed and the
values in E have not changed since the previous
computation.

● All such future occurrences of the expression can be
eliminated as there is no need to recompute the value of
the expression

● The Variables that are assigned to these future
occurrences of the expression are assigned to the
temporary that holds the value of the original expression
E

■ Strength Reduction

● Here an expensive operation is replaced by a cheaper
operation.

15

● The cost being talked about here is with respect to the
evaluation of the expression by the underlying hardware

● Example:
○ a*2 => a<<1
○ a/2 => a>>1

● ERROR HANDLING:

The following error handling strategies have been used:

● If a keyword is used as an identifier, an error is prompted to the user

● If there is mismatch with respect to the indentation, an error is

prompted to the user.

● If the length of an identifier exceeds 79 characters, an error message
prompting this is shown to the user and the identifier is truncated to
the first 79 characters

● If an undeclared variable is used as part of an expression, a syntax
error is thrown prompting the use of an undeclared variable

● If an invalid operator like the increment, decrement operator etc is
used as part of an expression, a syntax error is thrown

IMPLEMENTATION DETAILS

● SYMBOL TABLE CREATION:

○ The symbol table has been implemented as a vector of vector of
unordered map from string to a node. A node represents a record in
the symbol table and is a class consisting of attributes like identifier
name, line number, value associated with the identifier, scope value
and the column number.

○ Each vector inside the outermost vector corresponds to a particular

scope. Each such vector is a collection of unordered map containers
where each container corresponds to a symbol table of a particular
scope value

16

○ The unordered map is basically a hashed container where the actual
records of the symbol table are stored. The identifier is used to get the
hash value and it is mapped to a node.

○ The node and symbol table have been implemented as classes with

the appropriate attributes, appropriate constructors to initialize the
members and functions to provide the functionality of inserting into
the symbol table and a few other helper functions

● INTERMEDIATE CODE GENERATION:

○ First the union corresponding to yylval is modified to aid in the
generation of intermediate code.

○ The union has the following 4 fields:

■ indentation level of type int: This is used to keep track of the
indentation and increase or decrease the scope count
accordingly

■ text of type char* : All the tokens and non terminals that have a
char * value associated with it, use this field

■ structure inter_code having the following 4 fields:
● char *addr: This is used to store the name of the

temporary created as part of the action corresponding to
a grammar rule

● char *code: This is used to store the intermediate code
generated as part of the action corresponding to a
grammar rule

● char *true_l: This is used to store the label created that
corresponds to the true case

● char *false_l: This is used to store the label created that
corresponds to the false case

■ structure range_icg having the following 4 fields:
● char *start_r: This is used to store the start value

corresponding to the range function
● char *end_r: This is used to store the end value

corresponding to the range function
● char *step_r: This is used to store the step value

corresponding to the range function
● char *sym_tab_info: This is used to store the information

that will be used to update the symbol table

○ The intermediate code generation is done by using a vector of strings
inside each action corresponding to a grammar rule. The strings are

17

then concatenated to get one string, which is assigned to the attribute
code and propagated upwards. The other fields like addr, true_l and
false_l are also appropriately filled and propagated up the grammar
rules. This simulates the synthesized attributes concept learnt by us in
Compiler Design class.

○ A doubly linked list is used to implement the quadruple data structure

which is used to store the intermediate code generated. This doubly
linked list is essentially a collection of nodes where each node
corresponds to one record in the quadruple data structure. A node of
the quadruple data structure has the following attributes:

■ char *op: This field stores the operator
■ char *arg1: This field stores the argument 1 value
■ char *arg2: This field stores the argument 2 value
■ char *res: This field stores the variable or temporary that holds

the result
■ node *next: This field stores a pointer to the next record in the

doubly linked list. Stores NULL if it is the last node in the list.
■ node *prev: This field stores a pointer to the previous record in

the doubly linked list. Stores NULL if it is the first node in the
list.

● CODE OPTIMIZATION:

○ The code optimization phase takes the quadruple data structure as
input and provides the optimized quadruple data structure as the
output.

○ The input quadruple data structure is stored in a list of dictionaries.
Each element of this list (dictionary) corresponds to a record in the
quadruple data structure. The dictionary has fields like ‘op’, ‘arg1’,
‘arg2’ and ‘res’ to store the appropriate attributes from the records of
the quadruple data structure

○ Constant folding:
■ Uses the list of dictionaries created.
■ Traverses them and performs folding on encountering

constants as arguments

○ Constant propagation:
■ Uses the list of dictionaries created.
■ Traverses them and performs constant propagation when a

favourable case is encountered.

18

■ This is usually followed by constant folding

○ Common Subexpression Elimination:
■ Uses the list of dictionaries created
■ Creates a deep copy of this list to work with while traversing the

actual list. This is because it is unsafe to remove records from
an iterable while iterating through it

○ Strength Reduction:
■ Uses the list of dictionaries created

● ERROR HANDLING:

○ Everytime an error is encountered, the error message that is prompted
to the user contains the exact line number and the column number
where the error has occurred. This is achieved by using the first_line,
first_column, last_line, last_column fields associated with yylloc.

○ To retrieve the value of an identifier, the symbol table associated with

that scope is checked to see if the identifier has been previously
declared. If not, an error is prompted.

○ yyleng is used to keep track of the length of the string that has
matched the regular expression mentioned in the lex file. This is used
to check if the length of an identifier exceeds 79 characters or not. If it
does, the identifier is truncated to the first 79 characters

● Instructions on how to build and run our program

○ First the yacc utility is used to compile the yacc file: yacc -d -t --
verbose test1_y.y

■ Here -d is used to generate the y.tab.h file which is used by the
lex file

■ Here -t is used to track the generation of tokens
■ Here --verbose is used to generate the y.output file

○ Next the lex utility is used to compile the lex file: lex test1_l.l

○ The generated files are linked along with helper cpp program: g++ -

std=c++11 lex.yy.c y.tab.c test1.cpp -ll -ly -w

○ The executable is run with the required input: ./a.out < test.py

19

○ The intermediate code and the quadruple data structure generated are
stored in separate text files. This is used by the optimisations python
program which is run using the following command: python3
optimisations.py

RESULTS AND POSSIBLE SHORTCOMINGS:

● All the different cases mentioned in the Architecture section have been
handled and the working of the mini - compiler is as expected for these cases

● The basic constructs such as if, if-else, if-elif-else and for have been handled
● The Intermediate code generation is quite comprehensive with respect to the

different cases it can handle accurately
● The optimization phase is quite comprehensive as well, with respect to the

different optimizations it can perform
● The mini-compiler built by us is obviously not complete and can’t be used as

an alternative to the original python compiler and interpreter. This is because
the number of constructs, different variations and cases we could handle
were restricted due to the time constraints involved.

● There are quite a few cases for which the original python compiler would
work but our mini compiler wouldn’t work

● All the constructs and expressions used can only be compile time dependent.
Run time dependency couldn’t be introduced as support for input from the
user has not been provided.

SNAPSHOTS

Test cases to show cases handled by Intermediate Code Generation:

1. Test Case 1: Test case involves arithmetic expressions. The intermediate
code generated follows the rule of precedence and associativity as followed
by python

b = 3
c = 5
a = b + c
d = b*5
f = a/6
q = a + b - d / f * 4

20

Symbol Table:

Intermediate Code:

21

2. Test Case 2: Test case to show intermediate code generation for if, elif and
else constructs

a = 5
if a>5:
 b = 6
elif a<9:
 b = 7
elif a == 4:
 b = 9
else:
 b = 10

Symbol table:

22

Intermediate Code Generated:

Intermediate Code in Quadruple Format:

3. Test Case 3: Test Case to show intermediate code generation for the ‘for’
looping construct

a = 8
for i in range (5, 10, 2):
 b = 6

23

 Symbol Table:

 Intermediate Code Generated:

24

Test cases to show the Optimizations performed:

1. Test Case 1: Constant Folding Optimization

 a = 3

b = 6
c = 5 + 7
d = 6*123
e = a + 0
f = a * 0
g = b*1
h = a%1

Symbol Table:

25

Intermediate Code Generated (Before Optimization):

Intermediate Code after Optimization:

26

2. Test Case 2: Constant Propagation Optimization

 a = 5

b = 6
c = a + b
d = a*b
e = b - a
f = b/a

Symbol Table:

Intermediate Code Generated (Before Optimization):

27

Intermediate Code after Optimization:

3. Test Case 3: Common Subexpression Elimination Optimization

 a = 2

b = 3
c = a/b
q = 0
r = a/b
we = 123
eiur = 342
dsf = 3242
fg = a/b

 Symbol Table:

28

Intermediate Code Generated (Before Optimization):

Intermediate Code after Optimization:

4. Test Case 4: Strength Reduction Optimization

 a = 3

b = 5
c = a*2

29

d = a*64
e = b/128

 Symbol Table:

Intermediate Code Generated (Before Optimization):

30

Intermediate Code after Optimization:

CONCLUSION

By means of this project, we have learnt how to build a compiler for a high level
language like Python. Being limited by the duration of the semester, we did not build
a full fledged compiler. We handled a list of constructs like if, else and for. Besides,
we generated Intermediate Code in Quadruple format and four optimizations were
implemented.

We would like to thank the Dept. of CSE for giving us this opportunity to implement
our own compiler. This gave us a feel for how compilers run any code that we write.
Special thanks to Prof. Madhura V for her insightful lectures and project guidance
from time to time.

FUTURE ENHANCEMENTS

● We would like to handle more constructs that python supports like the while
and do while constructs, switch construct, provide support for functions,
classes.

● We would also like to support a few more data types specific to python like
sets, dictionaries, tuples etc.

31

REFERENCES / BIBLIOGRAPHY

● A lot of the concepts have been learnt from the resources provided for the
Compiler Design Course by PES University

● The material provided explicitly for the CD project with respect to the Lex /
YACC learning material has been quite useful in learning the basics

● The official Python documentation has been our primary resource to refer to
all things about Python

● A few references used are as follows:
○ The official grammar as used by Python 3.9 version, provided in the

official python documentation:
https://docs.python.org/3/reference/grammar.html

○ A comprehensive introduction to YACC -
https://www.cs.ccu.edu.tw/~naiwei/cs5605/YaccBison.html

○ More resources for YACC - https://silcnitc.github.io/yacc.html#yylex
○ Python documentation:

https://docs.python.org/3/reference/expressions.html
○ Information about Lexical analysis for Python as provided by the

official python documentation:
https://docs.python.org/3/reference/lexical_analysis.html#indentatio
n

