

Report
by Karan Kumar G

Submission date: 07-Dec-2021 10:56AM (UTC+0530)
Submission ID: 1723098349
File name: Report_3.pdf (1.55M)
Word count: 20361
Character count: 116564

13

14

32

6

17

20

7

11

15

3

19

30

3

23

6

5

10

10

16

5

5

13

15

1

22

3

27

34

6

21

5

18

18

33

28

8

2

26

31

29

24

9

9

25

12

12

2

4

4%
SIMILARITY INDEX

4%
INTERNET SOURCES

2%
PUBLICATIONS

1%
STUDENT PAPERS

1 1%

2 <1%

3 <1%

4 <1%

5 <1%

6 <1%

7 <1%

8 <1%

Report
ORIGINALITY REPORT

PRIMARY SOURCES

anorien.warwick.ac.uk
Internet Source

congdongitchiase.blogspot.com
Internet Source

researchr.org
Internet Source

Submitted to Higher Education Commission
Pakistan
Student Paper

Sean Rul, Hans Vandierendonck, Koen De
Bosschere. "Function level parallelism driven
by data dependencies", ACM SIGARCH
Computer Architecture News, 2007
Publication

link.springer.com
Internet Source

www.cse.iitk.ac.in
Internet Source

Submitted to The Robert Gordon University
Student Paper

9 <1%

10 <1%

11 <1%

12 <1%

13 <1%

14 <1%

15 <1%

16 <1%

17 <1%

www.science.smith.edu
Internet Source

citeseerx.ist.psu.edu
Internet Source

hal.inria.fr
Internet Source

Yanyan Dai, Xiangli Zhang. "A Synthesized
Heuristic Task Scheduling Algorithm", The
Scientific World Journal, 2014
Publication

Qichang Chen, Liqiang Wang, Ping Guo, He
Huang. "chapter 16 Analyzing Concurrent
Programs Title for Potential Programming
Errors", IGI Global, 2011
Publication

ftp.math.utah.edu
Internet Source

Lecture Notes in Computer Science, 2012.
Publication

www.cs.qub.ac.uk
Internet Source

B. Di Martino. "Two program comprehension
tools for automatic parallelization", IEEE
Concurrency, 2000
Publication

18 <1%

19 <1%

20 <1%

21 <1%

22 <1%

23 <1%

L.C. Briand, S. Morasca, V.R. Basili. "Property-
based software engineering measurement",
IEEE Transactions on Software Engineering,
1996
Publication

Submitted to The University of Manchester
Student Paper

B. Di Martino, C.W. Kessler. "Two program
comprehension tools for automatic
parallelization", IEEE Concurrency, 2000
Publication

Beniamino Di Martino, Antonio Esposito.
"Automatic Dynamic Data Structures
Recognition to Support the Migration of
Applications to the Cloud", International
Journal of Grid and High Performance
Computing, 2015
Publication

Serguei Diaz Baskakov, Juan Gutierrez
Cardenas. "Source to source compiler for the
automatic parallelization of JavaScript code",
2021 IEEE XXVIII International Conference on
Electronics, Electrical Engineering and
Computing (INTERCON), 2021
Publication

Hamid Arabnejad, João Bispo, Jorge G.
Barbosa, João M.P. Cardoso. "AutoPar-Clava",

24 <1%

25 <1%

26 <1%

27 <1%

28 <1%

29 <1%

Proceedings of the 9th Workshop and 7th
Workshop on Parallel Programming and
RunTime Management Techniques for
Manycore Architectures and Design Tools and
Architectures for Multicore Embedded
Computing Platforms - PARMA-DITAM '18,
2018
Publication

diendan.congdongcviet.com
Internet Source

ithutech.com
Internet Source

tutorialspoint.dev
Internet Source

www.ijcaonline.org
Internet Source

"Applied Parallel Computing. New Paradigms
for HPC in Industry and Academia", Springer
Science and Business Media LLC, 2001
Publication

Lekshmi S Nair. "An Analytical study of
Performance towards Task-level Parallelism
on Many-core systems using Java API", 2021
6th International Conference on
Communication and Electronics Systems
(ICCES), 2021
Publication

30 <1%

31 <1%

32 <1%

33 <1%

34 <1%

Exclude quotes On

Exclude bibliography On

Exclude matches < 5 words

export.arxiv.org
Internet Source

www.coursehero.com
Internet Source

www.grid.unina.it
Internet Source

"Information Security and Cryptology",
Springer Science and Business Media LLC,
2011
Publication

"Using and Improving OpenMP for Devices,
Tasks, and More", Springer Science and
Business Media LLC, 2014
Publication

Automatic Parallelization of Source Code using
Thread Scheduling

Darshan D
Computer Science

PES University
Bangalore, India

darshand2000@gmail.com

Karan Kumar G
Computer Science

PES University
Bangalore, India

karan292000@gmail.com

Manu M Bhat
Computer Science

PES University
Bangalore, India

manumbhat09@gmail.com

Mayur P L
Computer Science

PES University
Bangalore, India

mayurpeshve2@gmail.com

N S Kumar
Computer Science

PES University
Bangalore, India

kumaradhara@gmail.com

Abstract—Modern computers have improved in hardware by
leaps and bounds in recent times. The improvements have
been in the availability of multiple cores, with better thread
handling. Despite these advances, most programs are written as
sequential programs and hence use only a single thread. These
architectures can be exploited better by running these programs
on multiple threads. This would require parallelization of the
program, to the maximum extent possible. The transformation
to parallel program poses many challenging tasks both for newer
parallel program development and usage of already existing
legacy program modules. The parallel program must handle
race conditions, deadlocks, infinite wait problem resolution,
and data dependencies. These require skilled programmers and
is cumbersome for development. Another time and resource-
consuming part of the development of these programs would be
the debugging and testing needed for ensuring the correctness
of the parallel program. These costs negate the benefits for an
enterprise to manually convert software into parallel programs.
Therefore auto-parallelization is a feasible and affordable so-
lution, that will help improve the utilization of the available
hardware.

Currently available auto-parallelization tools focus on specific
techniques such as loop parallelization or are developed as
domain-specific solutions. We propose two techniques in an
attempt to generalize auto-parallelization and handle a variety
of cases. Our design focuses on task parallelism. We generate
parallel source code that executes functions in parallel on
different threads, i.e., inter-functional parallelism. The generated
code is made available to the user to execute or if needed modify
to their requirements.

Index Terms—auto-parallelization, parallel programming,
thread scheduling, data-dependency analysis

I. INTRODUCTION

Since the introduction of computers, hardware and the asso-
ciated software has improved in many ways. Currently, multi-
core multi-threaded architectures are commonly available to
the average consumer at a reasonable cost. Unfortunately,
the exploitation of these computational resources is limited
since most programs run only on a single thread. There are
considerable efforts being spent on programs to be converted

into parallel programs. However, the cost involved in develop-
ing software that runs as parallel program are typically high.
Legacy software was written for much older machines with
constraints on resources, and its complete conversion to a
parallelized version leads to a completely new development
effort in itself. Note here that it requires highly skilled software
developers who possess knowledge of parallel programming
environments. They will need to design and program the
software for the required parallelization. This design is invari-
ably more complex compared to the design of a sequential
program. The cost and time required for this development
are not justified for enterprises. Alternatively, both full or
partial automation of the process of parallelization to improve
the performance of their software would be feasible for the
enterprises hence justifying the cost and time required for it.

The above-stated reason has made automatic parallelization
of source code an important area of research. There have been
various different approaches for carrying out the transforma-
tion of programs to their parallel equivalent. Techniques used
for this vary from loop parallelization, program comprehen-
sion, and even machine learning in recent times. Our approach
focuses on functional parallelism, where we run functions in
parallel on different threads. Data-dependency analysis on the
original source code allows us to schedule these functions
such that the correctness of the program is maintained. This
effectively is an implementation of the philosophy of task
parallelism.

The main contributions of this paper are:
• Auto-parallelization using the approach of executing

function in parallel
• Code generation of resultant parallelized code, for user

to execute and modify as required.
• Thread scheduling and handling technique optimised for

our design of functional parallelism. We have opted to
write our own thread handling instead of using parallel
programming library directives. The details of this are

provided in Section III-B
• Issues generally associated with parallel programs such

as race conditions, infinite wait problem, load balancing
and busy waiting taken care in the generated program.

II. RELATED WORK

The most popular technique for auto-parallelization is the
usage of loop parallelization. In this technique, tools apply
loop optimizations such as loop tiling, unrolling, and running
loop iterations in parallel. Tools like Pluto [1] use this tech-
nique. The implementation of this uses a mathematical mod-
eling concept called polyhedral analysis. Similarly, ParaWise
[2] too is an auto-parallelization tool. ParaWise allows users
to tune the parallelization with hyperparameters to cater to any
domain-specific needs of the user. It generates a parallelized
code based on the given hyper-parameter values.

Another interesting approach towards parallelization is the
use of program comprehension. One of the earliest works
on this technique was done by Martino et al [3] in 1994.
In the original paper, the authors theorize a tool known
as PAP(Parallelizable Algorithmic Patterns). The identified
algorithms are replaced from a database containing parallel
equivalent algorithms This is was later implemented as a proof
of concept in the Vienna FORTRAN Compiler by the authors
[4]. Another closely related work, was the development of a
tool known as PARAMAT [5]. PARAMAT too uses program
comprehension techniques, where it assigns ”concepts” to sub-
tree of the program AST (Abstract Syntax Tree). It replaces
these sub-trees with equivalent parallel code.

In recent times with the advances in machine learning, there
have been attempts to use machine learning techniques for
parallelizing source code as well. Peter Kraft et al [6] use
neural networks and decision trees to predict the possible
future state of a program given the current state of the registers
and other necessary data. There are multiple predictions made
about a specific future point in the program. These predictions
are assigned to workers, which continue execution from the
predicted point using the predicted state. When the execution
of the original program reaches the point where the prediction
was made, they check which of the worker worked on the
correct predicted state, and jump into the last executed state
of the worker. This allows for parallelization of execution.

There have been works in the area of functional parallelism
as well, such as Sean Rul et al [8]. In this work, the authors
explore functional parallelism where they cluster functions and
execute clusters in parallel. Our exploration differs from their
work on the basis of a different approach, we use a technique
with master-worker architecture and another technique with
barriers for execution, as discussed in detail in section III.
However, this work lays the foundation for the idea of using
data-dependency analysis to extract execution details about the
function calls.

III. METHOD

In this section we present the two different techniques for
auto-parallelization. They are namely, master-worker architec-

ture based parallelisation and a worker-only architecture based
parallelization technique. The preprocessing stage for both
these techniques is the data-dependency analysis. The data-
dependency analysis stage extracts crucial information about
the given source code. This information is used by the later
stages for carrying out the generation of parallelized program.

A. Data Dependency Analysis

For applying any non-cosmetic transformations to a source
code, we must ensure the transformation does not affect the
output of the program in any case. We have used data-
dependency analysis for this purpose. The information ob-
tained through data-dependency analysis is used in later stages
to ensure correctness while transforming the program to a par-
allel program. To ensure correctness of program is maintained
in the generated code, there are two important aspects that
need to be considered. Before applying an operation on any
data in the program, we must ensure that the data in question
is up to date and all previous operations that needed to be
carried out on it have been completed. Also, the result of any
operation on the data present must have the intended effect
on the data, such that operation downstream in the execution
receive the output/modified data correctly.

To carry out data-dependency analysis we need to abstract
out certain aspects of the programmer’s influence, like their
style, etc. Also, it would be easier to extract information if the
program were present as a data structure that can be queried
easily. An Enriched Abstract Syntax Tree (AST) suits our
needs for this purpose. We use the CLAVA/LARA tool [9]
to generate the AST. LARA is a JavaScript-based language
that allows us to query on the generated AST in an efficient
manner.

The AST is used to carry out the following analysis:
• We query the AST for every function call in the

”main”(driver) function. The query returns the function
being called and the parameters passed. We store this
in an ordered data-structure. The order of storing is
maintained to be the same as the order of function calls in
the original source code. The data-structure is used later
on, to run data-dependency analysis on these functions.
This allows us to determine the implications the function
can have on the data passed as arguments. Any built-in
functions are not stored in this data-structure, as there
is no need for carrying out data-dependency analysis on
them. Example 1

i n t main () {
i n t a = 1 0 ;
i n t b = 2 0 ;
t r ans fo rm A () ;
t r a n s f o r m B (&a) ;
p r i n t f (”%d %d ” , a , b) ;
t r a n s f o r m C (a , b) ;

}

In the above example upon querying we obtain the
function calls made. The data structure to store function

calls is populated with transform A(), transform B(&a),
and transform C(a,b), such that their relative order is
maintained as in the given source code. Additionally, we
avoid function printf() because data-dependency implica-
tions of built-in functions are already known.
When populating the data structure, we also store infor-
mation on how the parameter is passed, i.e passed by
reference or passed by value. This is relevant for the
further data-dependency analysis we carry out on the
function body.

• For running the data-dependency analysis on the function
calls, the data-structure to store these functions are used
extensively. Using this data-structure, we keep an account
of all parameters passed by value. For these parameters,
all write operations that are a precursor before the value is
passed to the function call must be completed. Similarly
for parameters passed by reference, all write operations
prior to being passed must be completed. Additionally,
for parameters passed be reference, we track any write
operations made within the function. These write opera-
tion have implications outside the function body as well.
For this reason, they must be tracked and these then
form the write operations that must be satisfied before
any other operation is carried out on the same data. All
global variables being used within the function body are
also kept track of, for both reads and writes. Effectively,
global variables can be considered to be equivalent to
passed by reference parameters.
Consider the following example, Example 2

i n t c = 3 0 ; / / g l o b a l v a r i a b l e
vo id t r a n s f o r m (i n t *a , i n t b){

/ / w r i t e o p e r a t i o n on a
/ / r e a d on b and c
a [b − 2] = c ;

}
i n t main () {

i n t a [] = {1 , 2 , 3 , 4 , 5} ;
i n t b = 3 ;
t r a n s f o r m (i n t *a , i n t b) ;
r e t u r n 0 ;

}

In the above example, the function ”transform”, there is
a read operation on variable ’b’ and a write operation
on variable ’a’. As ’a’ is passed by reference(pointer
in the case of C language) the write operation has
implications outside the function as well. Therefore, this
operation is noted down and used as a barrier later on,
to ensure correctness. We define barrier with more detail
in subsection III-D.

• Handling return values of functions is a crucial part of
generalising the parallelization. If a function has a return
value, we query the AST to find the next read or write
operation on the variable where the return value is stored.
We store this information in another appropriate data-
structure indicating the function call, the corresponding

return variable and its next usage.
Example 3:

i n t t r a n s f o r m (i n t a){
r e t u r n a + 1 ;

}
i n t main () {

i n t b = t r a n s f o r m (1 0) ;
/ / s t a t e m e n t s t o be e x e c u t e d
/ / t h a t do n o t use b

/ / f i r s t u sage o f b
/ / a f t e r w r i t i n g r e t u r n v a l
p r i n t f (”%d\n ” , b % 2) ;
/ / s t a t e m e n t s t o be e x e c u t e d
r e t u r n 0 ;

}

In the code segment of Example 3, printf() uses the return
variable ’b’. Therefore, the function call - transform(10),
the return variable ’b’ and the next usage in printf
are all stored in a data-structure for later usage in the
parallelization phase.

B. Thread Handling

Our implementation used parallel programming directives in
its infancy. But the usage of these directives restricted certain
optimisations that were introduced. Also by designing our own
scheduler and handling thread operations natively allowed us
to optimise the implementation for the same. This also allowed
us the freedom to only have the necessary scheduling and
thread handling overloads, which reduced any other redundant
overloads. The freedom offered through native thread handling
was the finer control over execution. This control has been
exploited in both our techniques, and also allowed us to ensure
correctness in a robust manner.

C. Master-worker based auto parallelization Technique

The master-worker based parallelisation technique, as the
name suggests uses master threads and workers. The masters
are in charge of scheduling functions when they are ready to
be executed and to maintain any relevant information about
the execution, such as thread pool management. The worker
threads execute the function assigned to them by the master.
An overview of the program execution is presented in Fig. 1.
The data-dependency analysis results are stored in the database
”Data Dependency” and the details about function calls and
other implementations of functions and helpers made in the
original source code are stored in the database marked as
”Information about function calls”.

This design has two master threads, the Scheduler and the
Worker Tracker. The Scheduler is in-charge of scheduling
functions that are ready for execution. The Worker Tracker
is in charge of managing the thread pool. When a function is
scheduled for execution, the Worker Tracker finds a free thread
and sets the function for execution on this thread. If no threads
are free, then the Worker Tracker waits for a thread to be freed

Fig. 1. Technique 1 Flowchart.

and assigns the function to thread at the earliest possible. There
are two queue data-structures used by the master threads to
keep track of functions’ status. The wait queue holds functions
that have dependencies yet to be satisfied and hence are not
to be executed yet. The ready queue has functions for which
all necessary dependencies have been satisfied, and hence can
be executed. The Scheduler thread is responsible for moving
the functions to wait queue and later to the ready queue, once
the dependencies are satisfied. The wait queue is responsible
for assigning functions in ready queue onto a free thread.

By executing functions only when dependencies are satis-
fied, we ensure that no function is passed any data that has not
undergone the operations that need to be completed. This is
key in ensuring the correctness of the program in its execution.

Consider the following example: Example 4:

i n t main () {
/ / some code
/ / t r ans fo rm A makes a w r i t e
/ / on p a r a m e t e r a
t r ans fo rm A (i n t *a , i n t n) ;
t r a n s f o r m B (i n t *b , i n t m) ;

t r a n s f o r m C (i n t * a) ;
r e t u r n 0 ;

}

In Example 4, assume the code before transform A is
called has no effect on the subsequent code. The function
transform A is making a write operation on pointer a. As there
is no dependency that transform A needs to wait for, it can
be added to the ready queue. Since the function transform B
carries out its operation on pointer b, and changes made by
function transform A have no implications on it, we can add
transform B to the ready queue as well. However, the function
transform C uses the pointer a. So it needs to wait for the
write operation of function transform A to be completed.
So we add transform C to the wait queue, as it needs to
wait for its dependency to be satisfied. The wait queue is
intended for functions that are dependent on a previously
called function(s). The functions in this queue need to wait
until their dependency functions finish their execution. Once
the dependency functions finish their execution, the functions
waiting in the wait queue are moved into the ready queue,
implying they are ready to be executed. Functions inside the
ready queue are assigned separate threads for execution. Once
assigned, such functions are dequeued from the ready queue.

Common data structures such as ready queue, wait queue,
other lists used to maintain dependent functions, and cor-
responding arguments are used by the Scheduler. In order
to maintain synchronization among these data structures, we
use mutex locks. This prevents possible race conditions. For
the purpose of generalization of our scheduling algorithm to
handle all kinds of client code, we make use of a program
generating technique, which produces the parallelized version
of the client code, with appropriate thread allocation and mutex
locks in place.

1) Implementation Level Optimisations: Since we continue
to use threads for execution of different functions, it is useful
to not have to allocate and deallocate them repeatedly.The
process of allocation and deallocation of threads is a costly op-
eration. To reduce this overhead of allocation and deallocation,
we initialise a thread pool at the beginning of the execution
of the program. These threads then remain allocated until the
end of execution, after which the requirement is no longer
present and the threads are then deallocated. The concept of
promise and future from asynchronous programming is used,
to obtain the return value of functions that are assigned to
threads for execution. This allows for return value assignment
to appropriate variables and correct usage of the same.

D. Non-Master-worker based auto parallelisation Technique

It can be observed in the previous technique that if a
function is operating on any data. The latest it can complete
operation before it blocks the parallel execution of the source
code is when another operation or function needs to wait for its
completion. This occurs when the later function/operation uses
the data being read/written by the function being executed.
Therefore we can assume this later function/operation is a

deadline for the execution of the current function. In the
data-dependency analysis, we have found the next usage for
every parameter and return value. We use the aforementioned
concept and the information from data-dependency analysis
to allow for threads to self schedule and also self assign
function to themselves for execution. This makes the two
master threads redundant. Hence freeing two more threads to
be made available in the thread pool. Also, this reduces the
scheduling and thread management overheads. Example 5: For
example, consider the same code as used in Technique 1

i n t main () {
/ / some code
/ / t r ans fo rm A makes a w r i t e
/ / on p a r a m e t e r a
t r ans fo rm A (i n t *a , i n t n) ;
t r a n s f o r m B (i n t *b , i n t m) ;
t r a n s f o r m C (i n t * a) ;
r e t u r n 0 ;

}
We see that pointer ”a” is used again in transform C after
transform A makes a modification on it. So when processing
the data dependencies, we keep a map, where we store
that transform A needs to complete before the execution of
transform C. By using this map, we allow the threads to be
able to decide the deadline for execution, hence eliminating
the need for a master thread to monitor the threads and their
execution.

We describe Barrier Condition as a check of whether the
return value of the function call is used at a later point in the
program or if any of the arguments passed to the function call
are modified inside the function and used at a later point. The
outline of the Non-Master-worker-based auto parallelization
Technique is shown in Fig. 2. Every function is assigned to
a thread from the thread pool for execution. The thread first
checks the barrier condition of this function.

• If the condition returns true, for all parameters that are
modified and the return value, we go to the next usage
of these variables and set a barrier just before the usage.

• If the condition returns false, we set the barrier for
completion of execution to be just before the end of main.
This case occurs if and only if no other piece of code after
this function execution is dependent on the parameters
and return value.

The function then continues its execution on the assigned
thread. A barrier is eliminated only if the dependency that
sets the barrier is satisfied. So for executing any function,
all barriers set before it need to be eliminated. Therefore
barrier condition check allows us to ensure the correctness of
program because no function executes before its dependencies
are satisfied.

By using the barrier condition, we not only make the master
threads redundant and remove the overheads associated with
scheduling and thread management. There is also no longer
the requirement for ”ready” and ”wait” queues. By removing
these data-structures, we also reduce busy waiting. As there

Fig. 2. Technique 2 Flowchart.

are less mutex locks needed to modify these queues when
executing. To describe the reduction in waiting quantitatively,
there was a reduction from 8 mutex locks to 1 mutex lock
in our implementation. All these changes also make the
generated code much simpler and shorter than the previous
technique. The changes are not just cosmetic, there is also an
improvement in the execution speed as shown in section IV.

E. Handling non-function call in main

The ”main”(driver function will contain statements other
than function calls as well. These statements can be called
as non-function call statements. such statements need to be
taken care of, ensuring they are executed correctly and all data-
dependencies of these statements are satisfied. If possible, they
must even be parallelized. To undertake this extension to our
technique, we first group the statements between function calls
into blocks. On these blocks, the data-dependency analysis
technique used on functions are run. Similar as explained
in previous sub sections, any statement with a barrier set
before it by any previous function call or statement can not
be executed until the barrier has been eliminated. Also, if a
statement makes any write operations, then a barrier is set
on the next usage of the data undergoing the write operation.
This is similar to how the barrier is set with functions as well.
Handling selection and iterative statements are done with a
similar philosophy. For selection statements that have function
call(s) within them, we apply the same function parallelization
technique described earlier. This takes care of the selection
statements and even ensures that there are no race conditions
as it is handled when the functions are parallelized. Every
other statement inside selection statements is taken care of as
stated previously.

Example 6:

i n t t r ans fo rm A (i n t a){
r e t u r n a + 2 ;

}
vo id t r a n s f o r m B (i n t *a , i n t n){

a [0] = 4 ;
r e t u r n ;

}
i n t main () {

i n t r e s 1 ;
i n t * a r r = {1 , 2 , 3 , 4 , 5 , 6} ;
i n t b1 = 4 ;
r e s 1 = t r ans fo rm A (b1) ;
i n t r e s 2 = 0 ;
t r a n s f o r m B (a r r , b1) ;
f o r (i n t i = 0 ; i < r e s 1 ; i ++){

r e s 2 += a r r [i] + 2 ;
}
r e s 1 = r e s 2 + 2 ;
r e t u r n 0 ;

}

The function transform A makes a write operation on the
variable passed, but it is a pass-by-value, so this has no
implications on the argument passed. transform B has passed
by reference for the array, and it makes a write on this array.
So for every call of transform B, we will need to set a barrier
for the next usage of the array passed. So in the main function,
we set a barrier before the net usage of arr inside the loop. For
handling loops we check if all barriers set for it are cleared, if
they are, we assign a thread and execute the loop. In the above
example, we notice that res1 used res2, so we set a barrier for
that assignment, to wait for the loop to complete execution.

F. Comparing the Techniques

• The design of Technique 2 allows for the elimination
for scheduling and thread management. This frees both
the master threads and removes the requirement for both
ready and wait queues. As a result, there is an efficient
usage of underlying hardware without any overheads.

• Technique 2 eliminates many if-else constraints and re-
duces the number of mutex locks being used compared
to Technique 1.

• The reduced overheads, scheduling and other changes
simplifies the generated parallel code and even reduces
the size of the generated code compared to Technique 1.
We can, therefore, qualitatively conclude that Technique
2 is a significant improvement over technique 1, in terms
of generating parallel code.

IV. RESULTS

Our main aim has been to improve resource utilization of
underlying hardware to the maximum potential when execut-
ing a program, and thereby reduce the execution times. We
have measured this by comparing the execution time of the

Fig. 3. Sequential vs Parallel

Fig. 4. Technique 1 vs Technique 2, on an i5 2 core machine

sequential program and its parallel equivalents, generated by
both the aforementioned techniques in Section III.Although
execution time of a program can be used to indicate speed-
up. As our goal is also to improve the utilisation of avail-
able resources, we can not directly use only comparison of
execution time between the original sequential source code
and the generated parallel source code. In order to better
understand the impact of resource utilisation, we have chosen
to run the generation of parallel code and its execution on
different hardware with varying number of cores and threads.
We have specifically chosen an Intel i5 processor with 2 cores
and an Intel i7 processor with 12 cores. These architectures
are commonly available today to the average consumer and
hence can be used as a reflection of the impact in the real
world. This allows us to showcase that the parallel version
of the program has increased the utilisation of the underlying
available computational resource.

The Fig. 3 showcases the comparison of the sequential pro-
gram with that of parallel program generated by Technique 2,
Master Worker based approach, on two different architectures.
The Y-axis is the ratio of execution time of sequential to
parallel as we increase the number of computations carried out
in a program. We have used ratios to represent the increase

Fig. 5. Technique 1 vs Technique 2, on an i7 12 core machine

in this figure, as absolute comparisons are nearly impossible.
The sequential program execution time increases non-linearly,
while the increase in parallel time is seemingly more linear,
Fig 4 and Fig. 5 shows for both methods. Fig 4 and Fig 5 can
be compared to each other. They are the result of running on
two different architectures. We notice that while in Fig ¡insert
ref¿a the speed up is 500 times almost, in b. it is 550 times. To
generate Fig 5. we used an Intel i7 architecture with 12 cores
as compared to the i5 architectures with 2 cores. This can be
used to infer that, with increased availability of hardware, we
can improve the execution. This is possible as the underlying
parallel program tries to maximise the resource utilisation, and
on a machine with more cores and threads, it can achieve much
higher parallelism.

The implementation of Technique 2 is an evolution of some
of the ideas established in Technique 1 and additional design
features. These changes streamline the resultant parallel code
by reducing the number of mutex locks, increasing available
threads as workers and removing all scheduling overheads.
These changes along with the other described in previous
sections justify the improvement in execution time. The Fig 4
and Fig. 5 indicates the impact of these changes. Technique 2
make significant gains on Technique 1 parallel code execution.
As the number of computations are increased, Technique 2
continues to perform much better as a result of more available
threads and having no busy waiting for thread scheduling.

V. CONCLUSION

In this work, we have outlined our approaches to auto-
parallelization of source code. Our two approaches were that
of a master-worker architecture and another which was a
modification on the previous, which allowed us to remove the
master threads and allow for achieving more parallelism. Both
these methods involved an extensive data-dependency analysis.
The information from the data-dependency analysis was used
to ensure the correctness of the execution.

REFERENCES

[1] Uday Bondhugula, J. Ramanujam, P. Sadayappan, PLuTo: A Practical
and Fully Automatic Polyhedral Program Optimization System, 2007.

[2] ParaWise – Widening Accessibility to Efficient and Scalable Parallel
Code - White paper

[3] Martino B. D. & Iannello G, Towards automated code parallelization
through program comprehension, 1994.

[4] Cantiello P & Di Martino B, Automatic Source Code Transformation
for GPUs Based on Program Comprehension, 2012.

[5] Di Martino B & Kessler C.W, Two program comprehension tools for
automatic parallelization, 2000.

[6] Martino B. D. & Iannello G, Towards automated code parallelization
through program comprehension, 1994.

[7] Peter Kraft, Amos Waterland, Daniel Y Fu Anitha Gollamudi, Shai Szu-
lanski, Margo Seltzer. (2018). Automatic Parallelisation of Sequential
programs

[8] Sean Rul, Hans Vandierendonck, Koen De Bosschere. (2007). Function
Level Parallelism Driven by Data Dependencies

[9] Bispo, Joao & Cardoso, João. (2020). Clava: C/C++ source-
to-source compilation using LARA. SoftwareX. 12. 100565.
10.1016/j.softx.2020.100565.

