
UE18CS390B – Capstone Project Phase – 2
SEMESTER - VII

END SEMESTER ASSESSMENT

Project Title : Automated Parallelization of Source Code
 Using Program Comprehension

Project ID : PW22NSK03

Project Guide : Prof. N S Kumar

Project Team : Darshan D (PES1201801456)
 Karan Kumar G (PES1201801883)
 Manu M Bhat (PES1201801452)
 Mayur P L (PES1201801439)

Outline

● Abstract
● Literature and Product Survey
● Implementation Details of Program Comprehension Phase
● Implementation Details of Parallelization Phase:

➡ Method 1: Parallelism by AST Querying & OpenMP Directives
➡ Method 2: Naive Thread Scheduling using C++ concepts of Promises and Futures
➡ Method 3: Master-Worker based Optimised Thread Scheduling
➡ Method 4: Non Master-Worker based Optimised Thread Scheduling

● Project Demonstration
● Technologies Used
● Documentation
● Team Roles and Responsibilities
● Lessons Learnt
● Conclusion and Future Work
● References

Abstract

Automated Parallelization of Source Code using Program Comprehension:

● Generate the parallel equivalent of given sequential source code automatically.
● Maximise the utilization of the available computational resources.

ParallelisationProgram Comprehension

Comprehend the
Source Code

Generate
Equivalent Parallel

Code

Identify
Parallelizable

Segments

Analyse Data
Dependencies

Identify and
Perform Code
Optimisations

Input Source Code

Abstract

▪ Hardware has been improving at a rapid pace recently:
○ Multi - threaded systems
○ Multi - processor systems
○ Multi - core systems

▪ Performance gain is limited by software and programs written

▪ Sequential programs only exploit the clock speed improvements

Abstract

▪ Parallel computing enables:
○ Efficient use of available hardware
○ Faster execution
○ Better cost-effectiveness

▪ Problems with Parallel Coding:
○ Requires highly skilled programmers
○ Requires additional development time and increases cost
○ Requires maintaining correctness of code
○ Increases testing and debugging complexity

Abstract

▪ Auto parallelization techniques help in mitigating costs incurred by manual
parallelization

▪ Scope of current tools covers only loops and other minor optimisations

▪ Research and goal of the project
○ Enable parallelisation for entire programs
○ Support for a wide variety of programs
○ Achieve maximum possible parallelism

Outline

● Abstract
● Literature and Product Survey
● Implementation Details of Program Comprehension Phase
● Implementation Details of Parallelization Phase:

➡ Method 1: Parallelism by AST Querying & OpenMP Directives
➡ Method 2: Naive Thread Scheduling using C++ concepts of Promises and Futures
➡ Method 3: Master-Worker based Optimised Thread Scheduling
➡ Method 4: Non Master-Worker based Optimised Thread Scheduling

● Project Demonstration
● Technologies Used
● Documentation
● Team Roles and Responsibilities
● Lessons Learnt
● Conclusion and Future Work
● References

Literature and Product Survey

We present the following points regarding the forthcoming literature and product survey:

● The Paper title, authors and year of publication

● A brief introduction and explanation of the paper/product

● The Pros concerning the paper/product

● The Cons concerning the paper/product

● The availability of a tool/implementation

● Relation of the paper/product to our Capstone Project

Literature and Product Survey

1. Cantiello, P., & Di Martino, B. (2012). Automatic Source Code Transformation for GPUs

Based on Program Comprehension

● Performs program comprehension using PAP Recognizer (Static Analyser)

● Implements an “Extractor” based on Prolog facts to identify algorithms (paradigms)

● Modifies the program’s AST to add necessary sub-tree with parallel version of code

Literature and Product Survey

1. Cantiello, P., & Di Martino, B. (2012). Automatic Source Code Transformation for GPUs

Based on Program Comprehension

 Working pipeline of method proposed

Literature and Product Survey

1. Cantiello, P., & Di Martino, B. (2012). Automatic Source Code Transformation for GPUs
Based on Program Comprehension

Pros:

● Unique approach to utilise Program Comprehension to assimilate code
● Effective approach to use AST to handle section-wise code
● Flexible algorithm recognition with rule-based matching

Cons:

● Difficult generalisation for all algorithms, requires for extensive rule writing
● Long execution time for Recognition phase, implies scalability issues

Literature and Product Survey

1. Cantiello, P., & Di Martino, B. (2012). Automatic Source Code Transformation for GPUs

Based on Program Comprehension

Tool availability:

● Tool built according to authors, but not publicly available

Relation to our work:

● Paper provides basis for our approach to algorithm recognition (Program

comprehension)

Literature and Product Survey

2. Martino, B. D., & Iannello, G. (n.d.) (1991). Towards automated code parallelization through

program comprehension

● Presents Program comprehension as a “Concept Assigning Problem”

● Defines two “Programming Paradigms”:

○ Tree computation: Problems which can be divided into a representation of

parents-children tasks

○ Master-Worker based: Problems represented to have a Master task instructing

other worker tasks

Literature and Product Survey

2. Martino, B. D., & Iannello, G. (n.d.) (1991). Towards automated code parallelization through

program comprehension

● Recognizes the paradigm by the use of concept called “cliches”

● Defines the Parallel Skeleton code for the selected paradigm, required for

replacement

Literature and Product Survey

2. Martino, B. D., & Iannello, G. (n.d.) (1991). Towards automated code parallelization through

program comprehension

 Working pipeline of method proposed

Literature and Product Survey

2. Martino, B. D., & Iannello, G. (n.d.) (1991). Towards automated code parallelization through

program comprehension

Pros:

● Method aims to generalise process of parallelization for all kinds of programs

● Scalable with addition of pre-defined “Programming Paradigms”

Cons:

● Method might not work for a large number of algorithms

● Requires creating and updating databases to support additional paradigms

Literature and Product Survey

2. Martino, B. D., & Iannello, G. (n.d.) (1991). Towards automated code parallelization through
program comprehension

Tool availability:

● Method proposed is only theoretical in nature, no tool exists

Relation to our work:

● Paper provides basis for our approach to algorithm recognition (Program
Comprehension)

● Concept of paradigms and cliches helps us develop on a generalised approach of
parallelization

Literature and Product Survey

3. Uday Bondhugula, J. Ramanujam, P. Sadayappan (2007). PLuTo: A Practical and Fully

Automatic Polyhedral Program Optimization System

● Implements a S2S compiler that performs loop parallelisation

● Uses the concept of Polyhedral modelling

● Applies transformations based on dependencies on Affine Loops

● Performs various other transformation techniques on Non-affine Loops

Literature and Product Survey

3. Uday Bondhugula, J. Ramanujam, P. Sadayappan (2007). PLuTo: A Practical and Fully

Automatic Polyhedral Program Optimization System

Pros :

● Correctness of transformed program is verified mathematically

● Accuracy with respect to loop parallelisation and optimisations is high

Cons :

● Installation process is quite cumbersome

● Expensive nature of Integer Linear programming for Polyhedral modeling

● Limited nature of loop parallelisation

Literature and Product Survey

3. Uday Bondhugula, J. Ramanujam, P. Sadayappan (2007). PLuTo: A Practical and Fully
Automatic Polyhedral Program Optimization System

Tool Availability and implementation :

● Available as an open-source tool
● All major loop parallelisation techniques are implemented

Relation to our work :

● Tool performs loop-based parallelization and optimization which can be integrated
with our task-level parallelism to increase generality

Literature and Product Survey

4. ParaWise – Widening Accessibility to Efficient and Scalable Parallel Code (White Paper)

● Implementation not available in detail since tool is commercial and paid

● Customisation of type of parallelisation achieved

● Usage of OpenMP directives at appropriate positions using code analysis

● Message Passing optimizations

Literature and Product Survey

4. ParaWise – Widening Accessibility to Efficient and Scalable Parallel Code (White Paper)

Pros :

● Designed for different end users, i.e expert, non-expert and serial code users

● Provides state of the art features to enable parallelization

Cons :

● Requires user intervention to choose parallelisation settings, hence not fully
automated

● Does not cover all possibilities of parallelisation possible

Literature and Product Survey

4. ParaWise – Widening Accessibility to Efficient and Scalable Parallel Code (White Paper)

Tool Availability and implementation :

● Commercial tool, not available freely

● Analysis of requirements of users in the domain of HPC and accordingly design their

product

Relation to our work :

● Provides for a reference point with respect to the possible parallelisation of a program

Literature and Product Survey

5. Uri Alon, Meital Zilberstein, Omer Levy, Eran Yahav. (2019). code2vec: Learning
Distributed Representations of Code

● Converts source code to vector embeddings representation using a neural model

● Represents source code by capturing the meaning, intent and structure

● Converts code to its AST initially, extracting path-based representations

● Captures relative importance of sections of code and combines importance metrics
using a neural attention model - enables identifying subtle differences

Literature and Product Survey

5. Uri Alon, Meital Zilberstein, Omer Levy, Eran Yahav. (2019). code2vec: Learning

Distributed Representations of Code

Pros :

● SOTA model to obtain numerical representations of source code

● Neural attention model produces different vector embeddings for similar programs,
capturing the subtle differences

Cons :

● Requires large dataset to train the model to obtain decent results

● Applications such as code labelling might not be fully accurate due to lack of
categories represented in an inadequate dataset

Literature and Product Survey

5. Uri Alon, Meital Zilberstein, Omer Levy, Eran Yahav. (2019). code2vec: Learning
Distributed Representations of Code

Tool availability:

● Web applications available to test out any programs and check their labelling at
code2vec.org

Relation to our work:

● Vector embeddings obtained from model helps us in grouping similar vectors together
and perform program comprehension

Outline

● Abstract
● Literature and Product Survey
● Implementation Details of Program Comprehension Phase
● Implementation Details of Parallelization Phase:

➡ Method 1: Parallelism by AST Querying & OpenMP Directives
➡ Method 2: Naive Thread Scheduling using C++ concepts of Promises and Futures
➡ Method 3: Master-Worker based Optimised Thread Scheduling
➡ Method 4: Non Master-Worker based Optimised Thread Scheduling

● Project Demonstration
● Technologies Used
● Documentation
● Team Roles and Responsibilities
● Lessons Learnt
● Conclusion and Future Work
● References

Program Comprehension Implementation

Flow of Input Program
for Training

Flow of Input Test
Program for Prediction

Program Comprehension Implementation

Flow of Input Program
for Training

Flow of Input Test
Program for Prediction

Program Comprehension Implementation

A few rows in the “algorithm label to parallel
code” mapping database

Program Comprehension Implementation

Output of Program Comprehension phase on a
Map Reduce Program

Outline

● Abstract
● Literature and Product Survey
● Implementation Details of Program Comprehension Phase
● Implementation Details of Parallelization Phase:

➡ Method 1: Parallelism by AST Querying & OpenMP Directives
➡ Method 2: Naive Thread Scheduling using C++ concepts of Promises and Futures
➡ Method 3: Master-Worker based Optimised Thread Scheduling
➡ Method 4: Non Master-Worker based Optimised Thread Scheduling

● Project Demonstration
● Technologies Used
● Documentation
● Team Roles and Responsibilities
● Lessons Learnt
● Conclusion and Future Work
● References

Parallelization Implementation - Method 1

Method 1 Results

Comparison of execution times for Sequential vs Parallel environments

Method 1 Drawbacks

● Example program for
which Method-1 fails:

Input:
fn_A(arr1, n)
fn_B(arr1, n)
fn_C(arr1, n)
fn_A(arr2, n)
fn_B(arr2, n)
fn_C(arr2, n)

Output:
fn_A(arr1, n);
 #pragma omp parallel sections
 {
 #pragma omp section
 fn_B(arr1, n);
 #pragma omp section
 fn_C(arr1, n,);
 fn_A(arr2, n);
 #pragma omp section
 fn_B(arr2, n);
 #pragma omp section
 fn_C(arr2, n);
 }

Method 1 Drawbacks

• Limited degree of parallelism

• Failed to support grouping of function under one section for
OpenMP pragma

• Fine control of execution not possible, leading to Method-2

Outline

● Abstract
● Literature and Product Survey
● Implementation Details of Program Comprehension Phase
● Implementation Details of Parallelization Phase:

➡ Method 1: Parallelism by AST Querying & OpenMP Directives
➡ Method 2: Naive Thread Scheduling using C++ concepts of Promises and Futures
➡ Method 3: Master-Worker based Optimised Thread Scheduling
➡ Method 4: Non Master-Worker based Optimised Thread Scheduling

● Project Demonstration
● Technologies Used
● Documentation
● Team Roles and Responsibilities
● Lessons Learnt
● Conclusion and Future Work
● References

Parallelization Implementation - Method 2

Method 2 Drawbacks

● Method-2 is able to handle the test case which failed in Method-1, but it is not
completely optimised.

Output:

std::promise<void> p_arr1_0;
thread t1(fn_A, arr1, n, p_arr1_0);
std::promise<void> p_arr2_0;
thread t2(fn_A, arr2, n, p_arr2_0);
std::future<void> f_arr1_1= p_arr1_0.get_future().wait();
thread t3(fn_B, arr1, n);
thread t4(fn_C, arr1, n);
std::future<void> f_arr2_1= p_arr2_0.get_future().wait();
thread t5(fn_B, arr2, n);
thread t6(fn_C, arr2, n);

Input function calls:

fn_A(arr1, n)
fn_B(arr1, n)
fn_C(arr1, n)
fn_A(arr2, n)
fn_B(arr2, n)
fn_C(arr2, n)

Method 2 Drawbacks

● Failed to support grouping of functions in a generalised manner

● Increased execution time for certain cases as discussed

● Required more fine grained control of execution for achieving better parallelism

Outline

● Abstract
● Literature and Product Survey
● Implementation Details of Program Comprehension Phase
● Implementation Details of Parallelization Phase:

➡ Method 1: Parallelism by AST Querying & OpenMP Directives
➡ Method 2: Naive Thread Scheduling using C++ concepts of Promises and Futures
➡ Method 3: Master-Worker based Optimised Thread Scheduling
➡ Method 4: Non Master-Worker based Optimised Thread Scheduling

● Project Demonstration
● Technologies Used
● Documentation
● Team Roles and Responsibilities
● Lessons Learnt
● Conclusion and Future Work
● References

Parallelization Implementation - Method 3

Method 3 Results

Comparison of execution times for Sequential vs Parallel environments (only
inter-function parallelism)

Method 3 Results

Comparison of execution times for Sequential vs Parallel environments (only
inter-function parallelism)

Method 3 Results

Comparison of execution times for Sequential vs Parallel environments (only
inter-function parallelism)

Method 3 Results

Comparison of execution times on different machines, sequential and
parallel (only inter-function parallelism)

Method 3 Drawbacks

● 2 master threads always used for tracking and scheduling

● Large number of mutex locks leads to considerable busy waiting

● Complex generated program

● Large number of selection statements in the generated program leads to
frequent invalidation of instruction cache

● Higher complexity of program due to ready and wait queues

Outline

● Abstract
● Literature and Product Survey
● Implementation Details of Program Comprehension Phase
● Implementation Details of Parallelization Phase:

➡ Method 1: Parallelism by AST Querying & OpenMP Directives
➡ Method 2: Naive Thread Scheduling using C++ concepts of Promises and Futures
➡ Method 3: Master-Worker based Optimised Thread Scheduling
➡ Method 4: Non Master-Worker based Optimised Thread Scheduling

● Project Demonstration
● Technologies Used
● Documentation
● Team Roles and Responsibilities
● Lessons Learnt
● Conclusion and Future Work
● References

Parallelization Implementation - Method 4

We define Barrier Condition as a check of
whether
● return value of the function call is used

at a later point in the program or
● if any of the arguments are modified

inside the function and used at a later
point.

Project Demonstration

DEMO

Method 4 Results

Hardware setup : Core i5 - 2nd gen - 2 core machine

Ratio of Sequential execution times to Parallel execution times

Nearly 500
times faster

for larger
array sizes!!

Method 4 Results

Hardware setup : Core i7 - 9th gen - 6 core machine

Ratio of Sequential execution times to Parallel execution times

Nearly 550
times faster

for larger
array sizes!!

Method 3 vs Method 4

Hardware setup : Core i5 - 2nd gen - 2 core machine

Method 3 vs Method 4

Hardware setup : Core i7 - 9th gen - 6 core machine

Outline

● Abstract
● Literature and Product Survey
● Implementation Details of Program Comprehension Phase
● Implementation Details of Parallelization Phase:

➡ Method 1: Parallelism by AST Querying & OpenMP Directives
➡ Method 2: Naive Thread Scheduling using C++ concepts of Promises and Futures
➡ Method 3: Master-Worker based Optimised Thread Scheduling
➡ Method 4: Non Master-Worker based Optimised Thread Scheduling

● Project Demonstration
● Technologies Used
● Documentation
● Team Roles and Responsibilities
● Lessons Learnt
● Conclusion and Future Work
● References

Technologies Used

▪ OpenMP : For usage of parallel OpenMP directives to segment independent code
segments and execute them in parallel.

▪ C++ thread library (based on Pthreads) : For creation and execution of threads for
individual functions.

• Thread Pools
• Future and Promises
• Variant and Visit
• Mutex and Lock guards

▪ CLAVA/LARA : For generation of an enriched Abstract Syntax Tree to parse and obtain data
dependencies.

▪ JS and PHP : For creating a user interface to upload sequential code and generate the
parallel equivalent.

Outline

● Abstract
● Literature and Product Survey
● Implementation Details of Program Comprehension Phase
● Implementation Details of Parallelization Phase:

➡ Method 1: Parallelism by AST Querying & OpenMP Directives
➡ Method 2: Naive Thread Scheduling using C++ concepts of Promises and Futures
➡ Method 3: Master-Worker based Optimised Thread Scheduling
➡ Method 4: Non Master-Worker based Optimised Thread Scheduling

● Project Demonstration
● Technologies Used
● Documentation
● Team Roles and Responsibilities
● Lessons Learnt
● Conclusion and Future Work
● References

Documentation

● Project Report

● Plagiarism Report

● IEEE Paper Draft

● A3 size Poster

● Github repository: https://github.com/Spielerr/Capstone_Project

https://github.com/Spielerr/Capstone_Project

IEEE Paper Draft

▪ We intend on separating these ideas into two papers respectively

▪ Our capstone project entails two main ideas:
• Inter-functional parallelism - Functional parallelism
• Intra-functional parallelism - Program Comprehension

▪ Our intention for separation is to allow better clarity on each idea

▪ Submission to conference:
• Our aim is for International conferences, so as to have better reach for our paper
• We intend to focus on possible journal publications as well

List of targeted Conferences / Journals

Sl. No. Conference Name Deadline for
Submission of
Paper

Conference Date

1. International Conference on Parallel Programming and
Computing, ICPPC, Rome Italy

April 2nd, 2022 May 03-04, 2022

2. International Conference on Distributed and Parallel
Computing, ICDPC in Sydney, Australia

April 16th, 2022 May 17-18, 2022

3. International Conference on Parallel and Distributed
Computing Systems, ICPDCS in Amsterdam,
Netherlands

April 6th, 2022 August 05-06, 2022

4. International Conference on Network and Parallel
Computing ICNPC in Paris, France

April 16th, 2022 May 17-18, 2022

5. International Conference on Parallel and Distributed
Computing and Systems, ICPDCS in Montreal,
Canada

May 14th, 2022 June 14-15, 2022

List of targeted Conferences / Journals

Sl. No. Conference Name Deadline for
Submission of
Paper

Conference Date

6. 6th International Conference on High Performance
Compilation, Computing and Communications (HP3C
2022)

Feb 1, 2022 Jun 23, 2022 - Jun 25, 2022

7. International Conference on Parallel and Distributed
Computing Systems, ICPDCS in Dubai, United Arab
Emirates

April 08th, 2022 May 09-10, 2022

8. International Conference on Computational Mathematics,
Parallel and Distributed Computing ,ICMPDC in
Vancouver, Canada

April 19th, 2022 May 20-21, 2022

9. International Conference on Distributed Systems and
Parallel Computing ICDSPC in Dubai, United Arab
Emirates

May 27th, 2022 June 29-30, 2022

10. International Conference on Advances in Distributed and
Parallel Computing, ICADPC in Tokyo, Japan

June 22nd, 2022 July 22-23, 2022

List of targeted Conferences / Journals

Sl. No. Journal Name Link to Journal

1. International Journal of Parallel Programming https://link.springer.com/journal/1
0766/volumes-and-issues

2. Parallel Computing https://www.journals.elsevier.com
/parallel-computing

https://link.springer.com/journal/10766/volumes-and-issues
https://link.springer.com/journal/10766/volumes-and-issues
https://www.journals.elsevier.com/parallel-computing
https://www.journals.elsevier.com/parallel-computing

Outline

● Abstract
● Literature and Product Survey
● Implementation Details of Program Comprehension Phase
● Implementation Details of Parallelization Phase:

➡ Method 1: Parallelism by AST Querying & OpenMP Directives
➡ Method 2: Naive Thread Scheduling using C++ concepts of Promises and Futures
➡ Method 3: Master-Worker based Optimised Thread Scheduling
➡ Method 4: Non Master-Worker based Optimised Thread Scheduling

● Project Demonstration
● Technologies Used
● Documentation
● Team Roles and Responsibilities
● Lessons Learnt
● Conclusion and Future Work
● References

Team Roles and Responsibilities

PHASE 1

Team Roles and Responsibilities

Week Task Description Assignee

1-2 Literature Survey on
parallelization
techniques

An in depth literature survey into different
parallelization techniques developed and used so far.
To better understand existing techniques and their
advantages and pitfalls, so as to consider those during
our development

Karan & Manu

1-2 Literature Survey on
parallelising tools

To understand how different tools work, their
scalability, domain of application and the impact. Also
to better understand the tools and the driving
principles behind them, hence allowing us to be in a
better position for our development

Darshan & Mayur

3-5 Experimentation with
existing libraries

We experimented with existing libraries such as
openMP, c++ thread library, openMPI, OpenCL, CUDA
etc. This allowed us to gain a better understanding of
the target code we intend to generate

Darshan & Mayur

Team Roles and Responsibilities

Week Task Description Assignee

3-5 Experimentation with
different parallelising
compilers

Tried out different parallelising compilers such as pluto,
parawise, parafrase-2 etc. This was done to better
understand what exactly is the generated code, and
how useful it was to the case of parallelisation in the
general case

Karan & Manu

6 Discussed Dynamic
analyser with
senior(Skanda)

Had a meet with seniors to discuss their capstone
project on dynamic analysis, to better understand how
program comprehension can be carried out

Darshan, Karan, Manu &
Mayur

7 Naive GDB approach First attempt at automating parallelisation, used GDB
to identify relevant code and replace it with parallel
versions of code. Specifically tried it out with a
sequential sort function

Darshan, Karan, Manu &
Mayur

Team Roles and Responsibilities

Week Task Description Assignee

6-8 Initial parallelisation
technique

Assuming we have knowledge about the underlying
algorithm, proceeded with the implementation to
replace relevant code with parallel version

Darshan, Karan, Manu &
Mayur

9-10 Understanding
CLAVA/LARA

CLAVA/LARA tool offered us the ability to query AST.
This could help us in identifying relevant sections of
code and replacing with equivalent parallel versions

Darshan & Mayur

9 Review 2 preparation Completed required documents such as SRS, PPT
etc. Submitted the same to guide and prepared for
initial demo

Karan & Manu

Team Roles and Responsibilities

Week Task Description Assignee

9-10 LARA based tool
development

Used LARA to query AST for the information needed,
for parallelising and replacing code as needed. This
was used as the foundation for later improvements in
all our proposed methodology thus far.

Darshan & Mayur

11 Check feasibility of
proposed method 1

Check on the feasibility and potential pitfalls of method
1. This allowed us to better understand the changes
necessary and how to implement them

Karan & Manu

11 Development of
Method 1

We pursued an implementation of our proposed
methodology, and possible changes to the initial
design

Darshan, Karan, Manu &
Mayur

Team Roles and Responsibilities

Week Task Description Assignee

9-10 Implement suggestions
from review 2

We pursued the changes recommended by guide
during our demo in review 2. This involved adding
features to handle functions that were not being
parallelised and any other code in the main function

Darshan & Mayur

12 Design of Method 2 We set upon a new proposed methodology, where we
tried to design based on reordering functions while
maintaining their dependency. This involved studying
the usage of future and promise

Karan & Manu

12 Implementation of
Method 2

We refined our ideas. We learnt from Method 1,
Review 2 and literature surveys, and used the concept
of futures and promise, along with reordering of
functions, to build a naive scheduling algorithm.

Darshan, Karan, Manu &
Mayur

Team Roles and Responsibilities

Week Task Description Assignee

12-13 Carried out
experimentation on
Method 2

We tried various test cases on method 2. And tried to
find the edge cases. While it handled all the cases
handled by Method 1, and did so in an optimised
manner, there were a few issues in method 2. This
made us understand the need for fine grained control

Karan & Manu

13 Design of Method 3 From our understanding of Method 2 drawbacks, we
realised there needs to be more fine grained
scheduling. We designed the same, and generated
code that schedules, based on data dependency and
other required conditions

Darshan, Karan, Manu &
Mayur

13 Modifications to LARA
code, for information
needed for scheduling

The information required to do fine grained scheduling
was extracted from the AST. This made scheduling
more feasible and robust.

Darshan & Mayur

Team Roles and Responsibilities

Week Task Description Assignee

13-15 Implementation of
Method 3

We carried out the implementation of Method 3, where
we undertook activities to put our proposed
methodology of fine grained scheduling into action.
Our results seemed promising

Darshan, Karan, Manu &
Mayur

16 GUI for demo Upon the suggestion of our guide, we built a GUI, a
web interface for the tool. This was carried out in PHP
and Javascript

Darshan & Mayur

15-16 Review 3 preparation Began the preparation of documents and ppt for
review 3 held by college. This also involved the
documentation of work done and other related
activities

Karan & Manu

Team Roles and Responsibilities

Week Task Description Assignee

17-18 Completion of report We completed a comprehensive report of the Phase 1
of our capstone work. This involved drafting the report,
preparing the required graphs and results, Also
involved sending the same for plagiarism check

Darshan, Karan, Manu &
Mayur

Team Roles and Responsibilities

PHASE 2

Team Roles and Responsibilities

Week Task Description Assignee

1-2 Literature Survey on
Program
comprehension

An in depth literature survey into different program
comprehension techniques developed and used so far.
To better understand existing techniques and their
advantages and pitfalls, so as to consider those during
our development

Mayur & Manu

1-2 Extended handling of
client code

Implementation to include any type of client code apart
from function calls (no optimisation for loops or control
statements), along with continued refinement to the
generator program

Darshan & Karan

3-5 Review 1 Preparation Completing PPT as required, Addition of separate
futures to run our two threads (thread_track and
scheduling_fn), separate from void_futures meant for
void functions from client code. Additional
re-engineering along with fixing certain bugs to handle
return value variables storing return values of function
calls

Darshan, Karan, Manu &
Mayur

Team Roles and Responsibilities

Week Task Description Assignee

3-5 Development and
refinement of
generation program

To support functions with return value. Perform
dependency analysis to find next usage of return value
and modified parameter.

Darshan & Karan

5 Discussion with
Skanda and team
regarding their
capstone project of
“Code Semantic
Detection and
Optimization” carried
out in the previous year

Had a collaborative talk discussing mutual projects,
understanding the constraints of their project,
feasibility of usage of their project in our project’s
pipeline, and received link to their github project

Darshan, Karan, Manu &
Mayur

5-6 Setting up and
experimenting with the
tool “logic detector”
(Skanda’s team)

Tried to identify use cases and involved constraints
through a preliminary experimentation

Manu & Mayur

Team Roles and Responsibilities

Week Task Description Assignee

6 Preparation for Review
2

Started working on presentations, interface and
preparing demo for Review 2 with our mentor

Darshan, Karan, Manu &
Mayur

6-8 Continued refactoring
of the generator
program

Continued fixing bugs and handling more cases in the
generator program

Darshan & Karan

7-8 Tested out various
program
comprehension models

Analysed different models such as code2vec,
code2sec, TBCNN, etc. Identified the advantages and
shortcomings for each model.

Darshan, Karan, Manu &
Mayur

Team Roles and Responsibilities

Week Task Description Assignee

8-9 Data collection for ML
model

Started scraping data for different categories as
decided. Using a web scraper to extract data from
different code repositories such as Github, Leetcode,
etc.

Mayur & Karan

9-10 Fully integrated a basic
Program
comprehension model
into pipeline

Run astminer on the created dataset and train the
code2vec model to output the vector embeddings.
Created an independent PC module and fully
integrated it into the complete tool pipeline. Now we
have a fully functioning pipeline from start to finish.

Darshan, Karan, Manu &
Mayur

9-10 Method-4
implementation

Design and implementation of a new method to handle
parallelization - without the use of master threads, but
by making use of only information made available
using data dependency analysis.

Darshan & Karan

Team Roles and Responsibilities

Week Task Description Assignee

9-10 Clustering ideas to
categorize algorithms

Discussed and designed a clustering technique to
categorize input programs into different algorithm
categories.Experimentation and designing changes to
improve the clustering technique - usage of threshold
values, ensemble of binary models, etc.

Mayur & Manu

10-18 Research paper Decided on splitting project into two papers -
inter-function parallelism and program comprehension
based parallelism. Worked on first paper of
inter-functional parallelism, with continuous
modification based on suggestions from our guide

Darshan, Karan, Manu &
Mayur

10-11 Further refactoring and
bug fixes to generator
program

Further refinement of generator program to handle all
programs with no exceptions. Necessary modifications
and implementation for extended functionality of the
new generator program for Method 4

Karan & Mayur

Team Roles and Responsibilities

Week Task Description Assignee

10 Review 3 preparation
and presentation

Started working on presentations, interface and
preparing demo for Review 3 with our mentor.

Darshan, Karan, Manu &
Mayur

11 Review 3 A comprehensive review where we were able to
present our new method (Method 4) and show
implementations of the Program Comprehension
phase. Received very good feedback from the panel
members

Darshan, Karan, Manu &
Mayur

12 Map reduce program As suggested by our mentor, a better example which
captures the requirement of parallelization must be
shown as part of demo in Review 3. Verified all
features for this program, analysed the performance
gain. Generated results by running it on different
architectures and different array sizes. Represented
concisely with various graphs in our report

Darshan & Mayur

Team Roles and Responsibilities

Week Task Description Assignee

11-12 Experimentation with
other Parallelization
tools

Specifically checked out Pluto since it was the only tool
with an implementation, rest of them were just
concepts. Made a comprehensive list of limitations wrt
Pluto and figured out that our tool handles more cases
for functional parallelism

Darshan & Karan

13-15 Fixes to randomised
nature of the astminer

Due to inconsistencies in the outputs of the astminer,
the model received inconsistent path-based
representation data. Fixed this by sending any new
program through the beginning of the pipeline

Mayur & Darshan

13-15 More fixes to
find_future function in
generator program

Handled more cases by fixing some logic in the
generator program

Karan & Manu

Team Roles and Responsibilities

Week Task Description Assignee

16-17 Refactoring and
restructuring of code to
improve efficiency of
our pre-processing
stage of pipeline

Organizing code repository and minor fixes to both
parallelization and program comprehension phase

Darshan & Manu

16-18 Final ESA Review
preparation

Started working on presentations, interface and
preparing demo for ESA review with our mentor.
Prepared and finalised report, draft of IEEE paper, ppt
and other necessary documents.

Darshan, Karan, Manu &
Mayur

Outline

● Abstract
● Literature and Product Survey
● Implementation Details of Program Comprehension Phase
● Implementation Details of Parallelization Phase:

➡ Method 1: Parallelism by AST Querying & OpenMP Directives
➡ Method 2: Naive Thread Scheduling using C++ concepts of Promises and Futures
➡ Method 3: Master-Worker based Optimised Thread Scheduling
➡ Method 4: Non Master-Worker based Optimised Thread Scheduling

● Project Demonstration
● Technologies Used
● Documentation
● Team Roles and Responsibilities
● Lessons Learnt
● Conclusion and Future Work
● References

Lessons Learnt

• Learnt and experimented with a multitude of new domains and technologies:

• Enriched Abstract Syntax Tree generation and querying

• Data Dependency Analysis

• Concept of Parallelization

• C++ Promises and Futures

• OpenMP

• C++ Thread library

• Thread Pools

• Mutex locks and guards

Lessons Learnt

• C++ Variant and Visit

• Concept of Generating programs for different test cases

• Concept of Program Comprehension

• Path based representation of programs

• Vector embedding for programs

• Dynamic verification

Lessons Learnt

• Overview of the issues that have been overcome in this project:

• Handling of possible complications due to parallelization:

• Deadlock

• Race Conditions

• Starvation

• Generalizing the parallelization to handle variety of test cases

• Handling different edge cases possible

• Reengineering and Refactoring of generator program to handle different cases

Outline

● Abstract
● Literature and Product Survey
● Implementation Details of Program Comprehension Phase
● Implementation Details of Parallelization Phase:

➡ Method 1: Parallelism by AST Querying & OpenMP Directives
➡ Method 2: Naive Thread Scheduling using C++ concepts of Promises and Futures
➡ Method 3: Master-Worker based Optimised Thread Scheduling
➡ Method 4: Non Master-Worker based Optimised Thread Scheduling

● Project Demonstration
● Technologies Used
● Documentation
● Team Roles and Responsibilities
● Lessons Learnt
● Conclusion and Future Work
● References

Conclusion

● Proposed pipeline implemented in its entirety

● Assumptions made in Phase 1 have been eliminated.

● Parallelization Phase:

○ Simplified generated program using Method 4

○ Master threads removed, freeing two threads for function execution

○ Ready and wait queues have been removed

○ Reduced busy waiting for acquiring locks and number of mutex locks

○ Selection and Iterative Statements are handled

Conclusion

● Program Comprehension Phase:

○ Represent the input source code as vector embeddings

○ Find similarities between these embeddings to group them into clusters

○ Additionally verify if the predicted label is accurate using a dynamic

verification process

○ “Others” category introduced to ensure correctness of the program is

maintained all the time

○ Program Comprehension phase implemented with pipeline along with

Parallelisation phase, fully complete

Future Work

● Refinement of both parallelization and program comprehension phases for any
gains possible

● Parallelization Phase:

○ Extend the cases handled by generator program for better optimised code

○ Refactor the code to improve efficiency

● Program Comprehension Phase:

○ Extend support to more cases by training on larger datasets

○ Experiment with any new improvements in the area of Program
Comprehension

Outline

● Abstract
● Literature and Product Survey
● Implementation Details of Program Comprehension Phase
● Implementation Details of Parallelization Phase:

➡ Method 1: Parallelism by AST Querying & OpenMP Directives
➡ Method 2: Naive Thread Scheduling using C++ concepts of Promises and Futures
➡ Method 3: Master-Worker based Optimised Thread Scheduling
➡ Method 4: Non Master-Worker based Optimised Thread Scheduling

● Project Demonstration
● Technologies Used
● Documentation
● Team Roles and Responsibilities
● Lessons Learnt
● Conclusion and Future Work
● References

References

[1] Cantiello, P., & Di Martino, B. (2012). Automatic Source Code Transformation for GPUs
Based on Program Comprehension. Lecture Notes in Computer Science, 188–197.
doi:10.1007/978-3-642-29740-3_22

[2] Martino, B. D., & Iannello, G. (n.d.); Towards automated code parallelization through
program comprehension; 1994

[3] Di Martino, B., & Iannello, G. (n.d.). PAP Recognizer: a tool for automatic recognition of
parallelizable patterns. WPC ’96. 4th Workshop on Program Comprehension.
doi:10.1109/wpc.1996.501131

References

[4] Di Martino, B., & Kessler, C. W. (2000). Two program comprehension tools for automatic
parallelization. IEEE Concurrency, 8(1), 37–47. doi:10.1109/4434.824311

[5] Peter Kraft, Amos Waterland, Daniel Y Fu Anitha Gollamudi, Shai Szulanski, Margo
Seltzer. (2018). Automatic Parallelisation of Sequential programs

[6] Cristian Ramon-Cortes, Ramon Amela, Jorge Ejarque, Philippe Clauss, Rosa M. Badia.
(2018). AutoParallel: A Python module for automatic parallelization and distributed
execution of affine loop nests

References

[7] Wim Vanderbauwhede, Gavin Davidson. (2017). Domain-Specific Acceleration and
Auto-Parallelization of Legacy Scientific Code in FORTRAN 77 using source-to-source
Compilation

[8] Idan Mosseri, Lee-or Alon, Re’em Harel, and Gal Oren. (2020). ComPar: Optimized
Multi-Compiler for Automatic OpenMP S2S Parallelization

[9] Hamid Arabnejad, João Bispo, Jorge G. Barbosa, João M.P. Cardoso. (2018).
AutoPar-Clava: An Automatic Parallelization source-to-source tool for C code applications

References

[10] João Bispo, João M.P. Cardoso. (2020). Clava: C/C++ Source-to-Source compilation
using LARA

[11] Sean Rul, Hans Vandierendonck, Koen De Bosschere. (2007). Function Level
Parallelism Driven by Data Dependencies

[12] Di Martino, B.: Algorithmic concept recognition to support high performance code
reengineering. Special Issue on Hardware/Software Support for High Performance
Scientific and Engineering Computing of IEICE Transaction on Information and
Systems E87-D, 1743–1750

References

[13] Di Martino, B., Zima, H.P.: Support of automatic parallelization with concept
comprehension. Journal of Systems Architecture 45(6-7), 427–439 (1999)

[14] Gabel, M., Jiang, L., Su, Z.: Scalable detection of semantic clones. In: Proceedings of
the 30th International Conference on Software Engineering, ICSE 2008, pp. 321–330. ACM,
New York (2008)

[15] "Convolutional Neural Networks over Tree Structures for Programming Language
Processing" Lili Mou, et al.

References

[16] Bilateral Dependency Neural Networks for Cross-Language Algorithm
Classification, by Nghi D. Q. BUI, Yijun YU, Lingxiao JIANG

[17] Uri Alon, Meital Zilberstein, Omer Levy and Eran Yahav, "code2vec: Learning
Distributed Representations of Code", POPL'2019

[18] Uri Alon, Shaked Brody, Omer Levy and Eran Yahav, "code2seq: Generating
Sequences from Structured Representations of Code"

References

[19] “A Novel Neural Source Code Representation based on Abstract Syntax Tree”
Zhang, Jian et. al

Thank
You

